Francois2511
commited on
End of training
Browse files
README.md
CHANGED
@@ -18,8 +18,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the cuad-qa dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss:
|
22 |
-
- Jaccard: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -38,62 +38,34 @@ More information needed
|
|
38 |
### Training hyperparameters
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
-
- learning_rate:
|
42 |
- train_batch_size: 3
|
43 |
- eval_batch_size: 4
|
44 |
- seed: 42
|
45 |
- gradient_accumulation_steps: 4
|
46 |
- total_train_batch_size: 12
|
47 |
-
- optimizer: Use
|
48 |
- lr_scheduler_type: linear
|
49 |
-
- num_epochs:
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Jaccard |
|
54 |
|:-------------:|:------:|:----:|:---------------:|:-------:|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
| 65.2249 | 1.0742 | 1000 | 59.8434 | 0.0647 |
|
65 |
-
| 63.2437 | 1.1816 | 1100 | 60.3719 | 0.0932 |
|
66 |
-
| 67.1502 | 1.2891 | 1200 | 63.5264 | 0.1114 |
|
67 |
-
| 65.1003 | 1.3966 | 1300 | 60.7845 | 0.1243 |
|
68 |
-
| 64.7538 | 1.5040 | 1400 | 66.3558 | 0.1200 |
|
69 |
-
| 66.7688 | 1.6115 | 1500 | 69.2212 | 0.1149 |
|
70 |
-
| 76.4721 | 1.7190 | 1600 | 69.5449 | 0.1458 |
|
71 |
-
| 82.2733 | 1.8264 | 1700 | 82.1182 | 0.0449 |
|
72 |
-
| 78.7475 | 1.9339 | 1800 | 62.4942 | 0.1581 |
|
73 |
-
| 69.5967 | 2.0408 | 1900 | 63.3104 | 0.1507 |
|
74 |
-
| 67.6753 | 2.1483 | 2000 | 56.4553 | 0.2238 |
|
75 |
-
| 64.0365 | 2.2558 | 2100 | 60.3552 | 0.1978 |
|
76 |
-
| 62.561 | 2.3632 | 2200 | 55.5222 | 0.2238 |
|
77 |
-
| 62.0848 | 2.4707 | 2300 | 51.5148 | 0.2239 |
|
78 |
-
| 59.3192 | 2.5782 | 2400 | 56.1338 | 0.1939 |
|
79 |
-
| 63.3072 | 2.6857 | 2500 | 55.3624 | 0.2385 |
|
80 |
-
| 63.0132 | 2.7931 | 2600 | 48.8478 | 0.2614 |
|
81 |
-
| 61.0742 | 2.9006 | 2700 | 57.2687 | 0.2574 |
|
82 |
-
| 63.7064 | 3.0075 | 2800 | 58.7552 | 0.2569 |
|
83 |
-
| 61.3371 | 3.1150 | 2900 | 62.7214 | 0.2473 |
|
84 |
-
| 66.2795 | 3.2225 | 3000 | 60.0179 | 0.2640 |
|
85 |
-
| 65.9729 | 3.3299 | 3100 | 59.7260 | 0.2879 |
|
86 |
-
| 67.5846 | 3.4374 | 3200 | 63.1864 | 0.2627 |
|
87 |
-
| 65.6924 | 3.5449 | 3300 | 58.8332 | 0.2743 |
|
88 |
-
| 64.2456 | 3.6523 | 3400 | 59.7355 | 0.1667 |
|
89 |
-
| 64.9793 | 3.7598 | 3500 | 57.0126 | 0.1622 |
|
90 |
-
| 63.8452 | 3.8673 | 3600 | 56.8423 | 0.1332 |
|
91 |
-
| 65.2058 | 3.9747 | 3700 | 56.3253 | 0.1325 |
|
92 |
|
93 |
|
94 |
### Framework versions
|
95 |
|
96 |
-
- Transformers 4.
|
97 |
-
- Pytorch 2.
|
98 |
- Datasets 3.2.0
|
99 |
- Tokenizers 0.21.0
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the cuad-qa dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.2765
|
22 |
+
- Jaccard: 0.3298
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
38 |
### Training hyperparameters
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 8e-05
|
42 |
- train_batch_size: 3
|
43 |
- eval_batch_size: 4
|
44 |
- seed: 42
|
45 |
- gradient_accumulation_steps: 4
|
46 |
- total_train_batch_size: 12
|
47 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
|
48 |
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 3
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Jaccard |
|
54 |
|:-------------:|:------:|:----:|:---------------:|:-------:|
|
55 |
+
| 4.0374 | 0.3224 | 300 | 2.0316 | 0.3097 |
|
56 |
+
| 2.2477 | 0.6448 | 600 | 1.4555 | 0.3400 |
|
57 |
+
| 2.0917 | 0.9672 | 900 | 1.3932 | 0.3600 |
|
58 |
+
| 1.7293 | 1.2891 | 1200 | 1.2932 | 0.3288 |
|
59 |
+
| 1.709 | 1.6115 | 1500 | 1.2642 | 0.3280 |
|
60 |
+
| 1.7021 | 1.9339 | 1800 | 1.2142 | 0.3456 |
|
61 |
+
| 1.3928 | 2.2558 | 2100 | 1.2952 | 0.3295 |
|
62 |
+
| 1.3582 | 2.5782 | 2400 | 1.2791 | 0.3298 |
|
63 |
+
| 1.3509 | 2.9006 | 2700 | 1.2765 | 0.3298 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
|
66 |
### Framework versions
|
67 |
|
68 |
+
- Transformers 4.49.0.dev0
|
69 |
+
- Pytorch 2.4.1+cu124
|
70 |
- Datasets 3.2.0
|
71 |
- Tokenizers 0.21.0
|