shawgpt-finetuned-lr0.0002-wd0.1
This model is a fine-tuned version of TheBloke/Mistral-7B-Instruct-v0.2-GPTQ on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5222
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 12
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.5945 | 0.9231 | 3 | 3.9744 |
4.0565 | 1.8462 | 6 | 3.4522 |
3.4717 | 2.7692 | 9 | 2.9805 |
2.2415 | 4.0 | 13 | 2.5243 |
2.6157 | 4.9231 | 16 | 2.2545 |
2.2684 | 5.8462 | 19 | 2.0159 |
1.9597 | 6.7692 | 22 | 1.8274 |
1.3541 | 8.0 | 26 | 1.6805 |
1.6781 | 8.9231 | 29 | 1.5991 |
1.5663 | 9.8462 | 32 | 1.5487 |
1.5472 | 10.7692 | 35 | 1.5251 |
0.2813 | 11.0769 | 36 | 1.5222 |
Framework versions
- PEFT 0.13.2
- Transformers 4.44.2
- Pytorch 2.5.0+cu124
- Datasets 3.0.2
- Tokenizers 0.19.1
- Downloads last month
- 6
Model tree for FrederikKlinkby/shawgpt-finetuned-lr0.0002-wd0.1
Base model
mistralai/Mistral-7B-Instruct-v0.2
Quantized
TheBloke/Mistral-7B-Instruct-v0.2-GPTQ