bert-base-multilingual-cased-som
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1536
- Accuracy: 0.6696
- F1 Binary: 0.2916
- Precision: 0.1917
- Recall: 0.6088
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Binary | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 1.0 | 255 | 0.1615 | 0.6841 | 0.2548 | 0.1730 | 0.4835 |
0.1677 | 2.0 | 510 | 0.1626 | 0.4153 | 0.2399 | 0.1404 | 0.8264 |
0.1677 | 3.0 | 765 | 0.1736 | 0.7246 | 0.2826 | 0.1993 | 0.4857 |
0.1349 | 4.0 | 1020 | 0.1536 | 0.6696 | 0.2916 | 0.1917 | 0.6088 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for FrinzTheCoder/bert-base-multilingual-cased-som
Base model
google-bert/bert-base-multilingual-cased