Safetensors
qwen2
File size: 17,635 Bytes
bee7f04
 
 
 
 
 
 
 
 
 
 
69710cb
bee7f04
 
 
 
b7bc3ed
bee7f04
 
 
 
b7bc3ed
bee7f04
 
 
69710cb
 
 
 
 
bee7f04
 
b7bc3ed
 
 
 
 
bee7f04
 
 
b7bc3ed
 
bee7f04
 
 
b7bc3ed
 
 
 
bee7f04
 
 
 
 
 
 
 
 
 
b7bc3ed
bee7f04
 
 
 
 
b7bc3ed
bee7f04
 
b7bc3ed
bee7f04
 
 
 
 
b7bc3ed
bee7f04
 
b7bc3ed
bee7f04
 
 
 
b7bc3ed
 
bee7f04
 
 
b7bc3ed
bee7f04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7bc3ed
 
 
 
 
 
 
 
 
 
bee7f04
b7bc3ed
bee7f04
 
 
 
 
b7bc3ed
bee7f04
 
b7bc3ed
bee7f04
 
 
 
b7bc3ed
 
bee7f04
 
 
b7bc3ed
bee7f04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7bc3ed
bee7f04
 
 
 
 
 
 
 
b7bc3ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bee7f04
69710cb
 
 
 
 
 
 
 
b7bc3ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bee7f04
 
 
b7bc3ed
 
 
 
 
 
 
 
 
 
 
bee7f04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
<p align="center" width="100%">
</p>

<div id="top" align="center">

FuseO1-Preview: System-II Reasoning Fusion of LLMs
-----------------------------

<h4> |<a href="https://arxiv.org/abs/2408.07990"> 📑 Paper </a> |
<a href="https://github.com/fanqiwan/FuseAI"> 🐱 GitHub Repo </a> |
<a href="https://huggingface.co/FuseAI"> 🤗 Hugging Face </a> |
<a href="https://huggingface.co/blog/Wanfq/fuseo1-preview"> 🌐 Blog </a> |
</h4>

<!-- **Authors:** -->

_Fanqi Wan, Longguang Zhong, Ziyi Yang, Weizhou Shen, Xinting Huang_


<!-- **Affiliations:** -->

_FuseAI Team_

</div>

<p align="center">
    <img src="./assets/fuseo1-preview.jpg" width="100%"> <br>
</p>


## Overview

[FuseO1-Preview](https://huggingface.co/collections/FuseAI/fuseo1-preview-678eb56093649b2688bc9977) is our initial endeavor to enhance the System-II reasoning capabilities of large language models (LLMs) through innovative model fusion techniques. By employing our advanced [SCE](https://arxiv.org/abs/2408.07990) merging methodologies, we integrate multiple open-source o1-like LLMs into a unified model. Our goal is to incorporate the distinct knowledge and strengths from different reasoning LLMs into a single, unified model with strong System-II reasoning abilities, particularly in mathematics, coding, and science domains.

<p align="center">
    <img src="./assets/sce.jpg" width="70%"> <br>
</p>

To achieve this, we conduct two types of model merging:

- **Long-Long Reasoning Merging**: This approach involves model fusion across LLMs that utilize long-CoT reasoning, with the goal of enhancing long-CoT reasoning capabilities. The resulted [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) achieves a Pass@1 accuracy of **74.0 on AIME24**,  demonstrating significant performance improvements compared to the OpenAI o1-preview (44.6) and OpenAI o1-mini (63.4), even approaching OpenAI o1 (79.2).
- **Long-Short Reasoning Merging**: This approach involves model fusion between long-CoT and short-CoT LLMs, aiming to improve reasoning capabilities in both long and short reasoning processes. The resulted [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) is capable of utilizing both long and short reasoning processes and demonstrates relatively strong performance in long reasoning tasks.

| Model | Merge Type | Source Models | HF Link |
|:----- | ---- | ---- | ---- |
| [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) | Long-Long Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview), [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview), [GGUF](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview-GGUF) |
| [FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) | Long-Long Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview)  | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) |
| [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) | Long-Short Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) |
| [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview) | Long-Short Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/Qwen2.5-32B-Coder](https://huggingface.co/Qwen/Qwen2.5-32B-Coder) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview) |


## Long-Long Reasoning Merging

We conduct experiments on these folloing long-cot LLMs.

- [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B)
- [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview)
- [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview)

To reproduce the merged [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) model, using the script below.

```sh
cd FuseAI/FuseO1-Preview/mergekit
pip3 install -e .
model_save_dir=xx # your path to save the merged models
mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview --cudas
```

To reproduce the merged [FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) model, using the script below.

```sh
cd FuseAI/FuseO1-Preview/mergekit
pip3 install -e .
model_save_dir=xxx # your path to save the merged models
mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-32B-Preview --cuda
```

We provide the example code to use FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview.

```python3
from vllm import LLM, SamplingParams

llm = LLM(model="FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview", tensor_parallel_size=8)
sampling_params = SamplingParams(max_tokens=32768, temperature=0.7, stop=["<|im_end|>", "<|end▁of▁sentence|>"], stop_token_ids=[151645, 151643])

conversations = [
    [
        {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{{}}."},
        {"role": "user", "content": "Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$."},
    ],
]

responses = llm.chat(messages=conversations, sampling_params=sampling_params, use_tqdm=True)

for response in responses:
    print(response.outputs[0].text.strip())
```

## Long-Short Reasoning Merging

We conduct experiments on these folloing long-cot and short-cot LLMs.

- [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B)
- [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct)
- [Qwen/Qwen2.5-32B-Coder](https://huggingface.co/Qwen/Qwen2.5-32B-Coder)

To reproduce the merged [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) model, using the script below.

```sh
cd FuseAI/FuseO1-Preview/mergekit
pip3 install -e .
model_save_dir=xxx # your path to save the merged models
mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview --cuda
```

To reproduce the merged [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview) model, using the script below.

```sh
cd FuseAI/FuseO1-Preview/mergekit
pip3 install -e .
model_save_dir=xxx # your path to save the merged models
mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview --cuda
```

We provide the code to use FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview.

```python3
from vllm import LLM, SamplingParams

llm = LLM(model="FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview", tensor_parallel_size=8)
sampling_params = SamplingParams(max_tokens=32768, temperature=0.7, stop=["<|im_end|>", "<|end▁of▁sentence|>"], stop_token_ids=[151645, 151643])

conversations = [
    [
        {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{{}}."},
        {"role": "user", "content": "Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$."},
    ],
]

responses = llm.chat(messages=conversations, sampling_params=sampling_params, use_tqdm=True)

for response in responses:
    print(response.outputs[0].text.strip())
```

## Evaluation Results

We test the resulted models on three kinds of benchmarks, including **Math Reasoning**, **Code Reasoning** , and **Scientific Reasoning**.

Math Reasoning
  - AIME24
  - MATH500
  - OlympiadBench

Scientific Reasoning
  - GPQA-Diamond
  - MMLU-Pro
  - MMLU
  

Code Reasoning
  - LiveCodeBench (2408-2502)

> Important Note: We manully set `"add_bos_token": false` in `tokenizer_config.json` for all the evaluated LLMs to prevent the bos_token to be added twice for each prompt. Please download and modify to ensure consistency.

### Math Reasoning

The evaluation code is modified from [Qwen2.5-Math](https://github.com/QwenLM/Qwen2.5-Math). In our evaluation, we set the temperature to 0.6, the top-p to 0.95 and the max_tokens to 32768. We provide the example to reproduce our results in [math_evaluation](https://github.com/fanqiwan/FuseAI/tree/main/FuseO1-Preview/math_evaluation).

The system prompt for evaluation is set to:

```sh
Please reason step by step, and put your final answer within \\boxed{{}}.
```

The evaluation results are shown in the table below:

In our evaluation of AIME24, we follow the method from DeepSeek-R1, wherein Pass@1 is computed by averaging the results across 32 sampled responses per prompt, while Cons@32 is determined through self-consistency analysis of the same 32 sampled responses for each prompt. For other benchmarks, we only sample 1 response and report the Pass@1.

| Models | AIME24 Pass@1 | AIME24 Cons@32 | MATH500 | OlympiadBench |
|:------ | --------------| ------------------- | ------------ | -------------- |
| OpenAI o1 | 79.2 | - | 96.4 | - |
| OpenAI o1-preview | 44.6 | - | 85.5 | - |
| OpenAI o1-mini | 63.6 | - | 90.0 | - |
| DeepSeek R1 | 79.8 | - | 97.3 | - |
| [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | 69.2 | 83.3 | 93.6 | 64.3 |
| [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) | 43.8 | 56.7 | 88.4 | 60.3 |
| [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview) | 37.7 | 50.0 | 88.0 | 55.1 |
| [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | 17.0 | 20.0 | 81.8 | 48.1 |
| [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) | 68.6 | 83.3 | 94.6 | 64.9 |
| [FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) | 69.7 | 83.3 | 94.6 | 64.0 |
| [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) | 74.0 | 86.7 | 94.8 | 65.0 |

We show that our merged FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview demonstrate superior performance improvements comparet to DeepSeek-R1-Distill-Qwen-32B, QwQ-32B-Preview, and Sky-T1-32B-Preview on math reasoning. Specifically, our model achieves an accuracy of **74.0 Pass@1 and 86.7 Cons@32 on AIME24**,  demonstrating significant performance improvements compared to DeepSeek-R1-Distill-Qwen-32B (69.2 Pass@1 and 83.3 Cons@32), OpenAI o1-preview (44.6 Pass@1) and OpenAI o1-mini (63.4 Pass@1), even approaching OpenAI o1 (79.2 Pass@1).

### Scientific Reasoning

The evaluation code is modified from [SkyThought](https://github.com/NovaSky-AI/SkyThought). In our evaluation, we set the temperature to 0.7 and the max_tokens to 32768. We provide the example to reproduce our results in [evaluation](https://github.com/fanqiwan/FuseAI/tree/main/FuseO1-Preview/evaluation).

The system prompt for evaluation is set to:

```sh
You are a helpful and harmless assistant. You should think step-by-step.
```

The evaluation results are shown in the table below:

| Models | GPQA-Diamond| MMLU-Pro | MMLU |
|:------ | --------------| ------------ | -------------- |
| OpenAI o1 | 75.7 | - | 91.8 |
| OpenAI o1-preview | 73.3 | - | 90.8 |
| OpenAI o1-mini | 60.0 | 80.3 | 85.2 |
| DeepSeek R1 | 71.5 | 84.0 | 90.8 |
| [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | 57.6 | 68.7 | 82.2 |
| [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) | 49.5 | 63.5 | 85.2 |
| [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview) | 50.5 | 65.8 | 82.7 |
| [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | 46.5 | 56.3 | 79.6 |
| [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) | 55.1 | 68.6 | 82.0 |
| [FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) | 62.1 | 68.9 | 82.7 |
| [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) | 62.1 | 70.8 | 83.6 |

We show that our merged FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview demonstrate superior performance improvements comparet to DeepSeek-R1-Distill-Qwen-32B, QwQ-32B-Preview, and Sky-T1-32B-Preview on scientific reasoning. Specifically, our model achieves an accuracy of **62.1 on GPQA-Diamond and 70.8 on MMLU-Pro**, demonstrating significant performance improvements compared to DeepSeek-R1-Distill-Qwen-32B (57.6 on GPQA-Diamond and 68.7 on MMLU-Pro).


## Code Reasoning

The evaluation code is modified from [Qwen2.5-Coder](https://github.com/QwenLM/Qwen2.5-Coder/tree/main/qwencoder-eval/reasoning/livecode_bench_cot). In our evaluation, we set the temperature to 0.6, the top-p to 0.95 and the max_tokens to 32768. We provide the example to reproduce our results in [code_evaluation](https://github.com/fanqiwan/FuseAI/tree/main/FuseO1-Preview/code_evaluation).

The system prompt for evaluation is set to:

```sh
A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>.
```

In our evaluation of LiveCodeBench, we follow the method from DeepSeek-R1 and make a slight modification. The Pass@1 is computed by averaging the results across 16 sampled responses per prompt.

The evaluation results are shown in the table below:

| Models | LiveCodeBench | LiveCodeBench-Easy | LiveCodeBench-Medium | LiveCodeBench-Hard |
|:------ | --------------| ------------------- | ------------ | -------------- |
| OpenAI o1 | 63.4 | 98.5 | 80.9 | 31.7 |
| OpenAI o1-preview | 42.7 | 97.0 | 47.2 | 9.8 |
| OpenAI o1-mini | 52.00 | 91.0 | 67.4 | 19.5 |
| DeepSeek R1 | 62.8 | 98.4 | 78.3 | 32.2 |
| [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | 56.1 | 93.6 | 73.1 | 23.4 |
| [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) | 44.4 | 94.9 | 53.8 | 10.0 |
| [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) | 57.9 | 93.6 | 76.0 | 25.5 |

We show that our merged FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview demonstrate superior performance improvements comparet to DeepSeek-R1-Distill-Qwen-32B, QwQ-32B-Preview, and Sky-T1-32B-Preview on scientific reasoning. Specifically, our model achieves an accuracy of **57.9 on LiveCodeBench and 25.5 on LiveCodeBench-Hard**,  demonstrating significant performance improvements compared to DeepSeek-R1-Distill-Qwen-32B (56.1 on LiveCodeBench and 23.4 on LiveCodeBench-Hard), OpenAI o1-preview (42.7 on LiveCodeBench and 9.8 on LiveCodeBench-Hard) and OpenAI o1-mini (52.0 on LiveCodeBench and 19.5 on LiveCodeBench-Hard Pass@1).

## Future Works

This work is our first attempt effort to achieve knowledge fusion of System-II reasoning LLMs through a model merging approach, which is limited to LLMs with identical scale and architecture. In future work, we plan to employ our [explicit model fusion](https://arxiv.org/abs/2401.10491) method, based on multi-teacher knowledge distillation, and our [implici model fusion](https://arxiv.org/abs/2412.03187) method, which utilizes weighted-reward preference optimization for LLMs with different scales and architectures.
Furthermore, we intend to explore the combination of knowledge fusion with reinforcement learning (RL) methods, which have been demonstrated as the most effective approach for enhancing reasoning abilities. Stay tuned for the next version of FuseO1!

## Citations

```
@article{wan2024fusechat,
  title={Fusechat: Knowledge fusion of chat models},
  author={Wan, Fanqi and Zhong, Longguang and Yang, Ziyi and Chen, Ruijun and Quan, Xiaojun},
  journal={arXiv preprint arXiv:2408.07990},
  year={2024}
}
```