FuturisticVibes's picture
Upload folder using huggingface_hub
d1afad8 verified
|
raw
history blame
4.59 kB
---
language:
- en
- zh
license: other
base_model: Qwen/Qwen2-72B-Instruct
tags:
- chat
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
- name: magnum-72b-v1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 76.06
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/magnum-72b-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 57.65
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/magnum-72b-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 35.27
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/magnum-72b-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.79
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/magnum-72b-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 15.62
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/magnum-72b-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.64
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/magnum-72b-v1
name: Open LLM Leaderboard
---
![](https://files.catbox.moe/ngqnb1.png)
This is the first in a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of [Qwen-2 72B Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct).
## Prompting
Model has been Instruct tuned with the ChatML formatting. A typical input would look like this:
```py
"""<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
"""
```
## Credits
This model has been a team effort, and the credits goes to all members of Anthracite.
We'd also like to thank [Kearm](https://twitter.com/Nottlespike) for sponsoring the compute needed to train this model.
## Training
The training was done with 55 million tokens of high-quality RP data, over 1.5 epochs. We used 8x [AMD Instinct™ MI300X Accelerators](https://www.amd.com/en/products/accelerators/instinct/mi300/mi300x.html) for the full-parameter fine-tuning of the model.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
## Safety
...
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_alpindale__magnum-72b-v1)
| Metric |Value|
|-------------------|----:|
|Avg. |42.17|
|IFEval (0-Shot) |76.06|
|BBH (3-Shot) |57.65|
|MATH Lvl 5 (4-Shot)|35.27|
|GPQA (0-shot) |18.79|
|MuSR (0-shot) |15.62|
|MMLU-PRO (5-shot) |49.64|