Edit model card

camembert-base-edda-span-classification

This model is designed to identify and classify named entities (such as Spatial, Person, and MISC), nominal entities, spatial relations, and other relevant information such as geographic coordinates within French encyclopedic entries. It has been trained on the French Encyclopédie ou dictionnaire raisonné des sciences des arts et des métiers par une société de gens de lettres (1751-1772) edited by Diderot and d'Alembert (provided by the ARTFL Encyclopédie Project). Dataset: https://huggingface.co/datasets/GEODE/GeoEDdA

Class labels

The tagset is as follows:

  • NC_Spatial: a common noun that identifies a spatial entity (nominal spatial entity) including natural features, e.g. ville, la rivière, royaume.
  • NP_Spatial: a proper noun identifying the name of a place (spatial named entities), e.g. France, Paris, la Chine.
  • Relation: spatial relation, e.g. dans, sur, à 10 lieues de.
  • Latlong: geographic coordinates, e.g. Long. 19. 49. lat. 43. 55. 44.
  • NC_Person: a common noun that identifies a person (nominal spatial entity), e.g. roi, l'empereur, les auteurs.
  • NP_Person: a proper noun identifying the name of a person (person named entities), e.g. Louis XIV, Pline, les Romains.
  • NP_Misc: a proper noun identifying entities not classified as spatial or person, e.g. l'Eglise, 1702, Pélasgique.
  • Head: entry name
  • Domain-Mark: words indicating the knowledge domain (usually after the head and between parenthesis), e.g. Géographie, Geog., en Anatomie.

Model Description

Bias, Risks, and Limitations

This model was trained entirely on French encyclopedic entries and will likely not perform well on text in other languages or other corpora.

How to Get Started with the Model

Use the code below to get started with the model.

from transformers import pipeline
import torch
from datasets import load_dataset


pipe = pipeline("token-classification", model="GEODE/camembert-base-edda-span-classification", aggregation_strategy="simple", device=device)

content = "* ALBI, (Géog.) ville de France, capitale de l'Albigeois, dans le haut Languedoc : elle est sur le Tarn. Long. 19. 49. lat. 43. 55. 44."

print(pipe(content))


# Output
[{'entity_group': 'Head',
  'score': 0.9918331,
  'word': 'ALBI',
  'start': 2,
  'end': 6},
 {'entity_group': 'Domain_mark',
  'score': 0.9260238,
  'word': '(Géog.',
  'start': 8,
  'end': 14},
 {'entity_group': 'NC_Spatial',
  'score': 0.99029493,
  'word': 'ville',
  'start': 16,
  'end': 21},
 {'entity_group': 'NP_Spatial',
  'score': 0.9919335,
  'word': 'France',
  'start': 25,
  'end': 31},
 {'entity_group': 'NC_Spatial',
  'score': 0.9903319,
  'word': 'capitale',
  'start': 33,
  'end': 41},
 {'entity_group': 'NP_Spatial',
  'score': 0.9919644,
  'word': "l'Albigeois",
  'start': 45,
  'end': 56},
 {'entity_group': 'Relation',
  'score': 0.98715705,
  'word': 'dans',
  'start': 58,
  'end': 62},
 {'entity_group': 'NP_Spatial',
  'score': 0.9919502,
  'word': 'le haut Languedoc',
  'start': 63,
  'end': 80},
 {'entity_group': 'Relation',
  'score': 0.98698694,
  'word': 'sur',
  'start': 92,
  'end': 95},
 {'entity_group': 'NP_Spatial',
  'score': 0.9921453,
  'word': 'le Tarn',
  'start': 96,
  'end': 103},
 {'entity_group': 'Latlong',
  'score': 0.99200517,
  'word': 'Long. 19. 49. lat. 43. 55. 44',
  'start': 105,
  'end': 134}]

Training Details

Training Data

The model was trained using a set of 2200 paragraphs randomly selected out of 2001 Encyclopédie's entries. All paragraphs were written in French and are distributed as follows among the Encyclopédie knowledge domains:

Knowledge domain Paragraphs
Géographie 1096
Histoire 259
Droit Jurisprudence 113
Physique 92
Métiers 92
Médecine 88
Philosophie 69
Histoire naturelle 65
Belles-lettres 65
Militaire 62
Commerce 48
Beaux-arts 44
Agriculture 36
Chasse 31
Religion 23
Musique 17

The spans/entities were labeled by the project team along with using pre-labelling with early models to speed up the labelling process. A train/val/test split was used. Validation and test sets are composed of 200 paragraphs each: 100 classified as 'Géographie' and 100 from another knowledge domain. The datasets have the following breakdown of tokens and spans/entities.

Train Validation Test
Paragraphs 1,800 200 200
Tokens 132,398 14,959 13,881
NC-Spatial 3,252 358 355
NP-Spatial 4,707 464 519
Relation 2,093 219 226
Latlong 553 66 72
NC-Person 1,378 132 133
NP-Person 1,599 170 150
NP-Misc 948 108 96
Head 1,261 142 153
Domain-Mark 1,069 122 133

Training Procedure

For full training details and results please see the GitHub repository: https://github.com/GEODE-project/ner-bert

Evaluation

  • Overall micro-average model performances (token-based)
Precision Recall F-score
91.5 94.8 93.1
  • Token-based model performances (Test set)
Precision Recall F-score Support
NC-Spatial 96.7 95.1 95.9 592
NP-Spatial 95.9 95.5 95.7 717
Relation 89.8 95.6 92.6 452
Latlong 97.0 98.5 97.7 789
NC-Person 70.4 78.4 74.2 222
NP-Person 88.6 90.4 89.5 198
NP-Misc 69.0 82.9 75.3 175
Head 97.3 98.0 97.6 254
Domain-mark 99.0 100.0 99.5 392

Acknowledgement

The authors are grateful to the ASLAN project (ANR-10-LABX-0081) of the Université de Lyon, for its financial support within the French program "Investments for the Future" operated by the National Research Agency (ANR). Data courtesy the ARTFL Encyclopédie Project, University of Chicago.

Downloads last month
50
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for GEODE/camembert-base-edda-span-classification

Finetuned
(94)
this model

Dataset used to train GEODE/camembert-base-edda-span-classification