jannisborn's picture
Update README.md
f65ec5c verified
metadata
license: mit
language:
  - en

Multitask Text and Chemistry T5

Multitask Text and Chemistry T5 : a multi-domain, multi-task language model to solve a wide range of tasks in both the chemical and natural language domains. Published by Christofidellis et al.

Model Details: The Multitask Text and Chemistry T5 variant trained using t5-small as its pretrained based and the augmented dataset.

Developers: Dimitrios Christofidellis*, Giorgio Giannone*, Jannis Born, Teodoro Laino and Matteo Manica from IBM Research and Ole Winther from Technical University of Denmark.

Distributors: Model natively integrated into GT4SD.

Model date: 2023.

Model type: A Transformer-based language model that is trained on a multi-domain and a multi-task dataset by aggregating available datasets for the tasks of Forward reaction prediction, Retrosynthesis, Molecular captioning, Text-conditional de novo generation and Paragraph to actions.

Information about training algorithms, parameters, fairness constraints or other applied approaches, and features: N.A.

Paper or other resource for more information: The Multitask Text and Chemistry T5 Christofidellis et al.(2023)

License: MIT

Where to send questions or comments about the model: Open an issue on GT4SD repository.

Citation

@inproceedings{christofidellis2023unifying,
  title = 	 {Unifying Molecular and Textual Representations via Multi-task Language Modelling},
  author =       {Christofidellis, Dimitrios and Giannone, Giorgio and Born, Jannis and Winther, Ole and Laino, Teodoro and Manica, Matteo},
  booktitle = 	 {Proceedings of the 40th International Conference on Machine Learning},
  pages = 	 {6140--6157},
  year = 	 {2023},
  volume = 	 {202},
  series = 	 {Proceedings of Machine Learning Research},
  publisher =    {PMLR},
  pdf = 	 {https://proceedings.mlr.press/v202/christofidellis23a/christofidellis23a.pdf},
  url = 	 {https://proceedings.mlr.press/v202/christofidellis23a.html},
}

*equal contribution