GaetanMichelet's picture
End of training
f48ce9e verified
|
raw
history blame
2.49 kB
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- GaetanMichelet/chat-60_ft_task-2_auto
- GaetanMichelet/chat-120_ft_task-2_auto
- GaetanMichelet/chat-180_ft_task-2_auto
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-2_180-samples_config-2_auto
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-31-8B_task-2_180-samples_config-2_auto
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the GaetanMichelet/chat-60_ft_task-2_auto, the GaetanMichelet/chat-120_ft_task-2_auto and the GaetanMichelet/chat-180_ft_task-2_auto datasets.
It achieves the following results on the evaluation set:
- Loss: 0.5745
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 0.8788 | 0.9412 | 8 | 0.8773 |
| 0.7758 | 2.0 | 17 | 0.7601 |
| 0.7042 | 2.9412 | 25 | 0.6669 |
| 0.5735 | 4.0 | 34 | 0.6089 |
| 0.5334 | 4.9412 | 42 | 0.5868 |
| 0.5073 | 6.0 | 51 | 0.5745 |
| 0.42 | 6.9412 | 59 | 0.5880 |
| 0.3519 | 8.0 | 68 | 0.6222 |
| 0.2325 | 8.9412 | 76 | 0.7261 |
| 0.1557 | 10.0 | 85 | 0.7673 |
| 0.0979 | 10.9412 | 93 | 0.8393 |
| 0.0516 | 12.0 | 102 | 1.0523 |
| 0.0399 | 12.9412 | 110 | 1.1251 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1