GaetanMichelet's picture
End of training
f48ce9e verified
metadata
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
  - GaetanMichelet/chat-60_ft_task-2_auto
  - GaetanMichelet/chat-120_ft_task-2_auto
  - GaetanMichelet/chat-180_ft_task-2_auto
library_name: peft
license: llama3.1
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: Llama-31-8B_task-2_180-samples_config-2_auto
    results: []

Llama-31-8B_task-2_180-samples_config-2_auto

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-2_auto, the GaetanMichelet/chat-120_ft_task-2_auto and the GaetanMichelet/chat-180_ft_task-2_auto datasets. It achieves the following results on the evaluation set:

  • Loss: 0.5745

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
0.8788 0.9412 8 0.8773
0.7758 2.0 17 0.7601
0.7042 2.9412 25 0.6669
0.5735 4.0 34 0.6089
0.5334 4.9412 42 0.5868
0.5073 6.0 51 0.5745
0.42 6.9412 59 0.5880
0.3519 8.0 68 0.6222
0.2325 8.9412 76 0.7261
0.1557 10.0 85 0.7673
0.0979 10.9412 93 0.8393
0.0516 12.0 102 1.0523
0.0399 12.9412 110 1.1251

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1