|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- mteb |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:100K<n<1M |
|
- loss:AnglELoss |
|
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2 |
|
widget: |
|
- source_sentence: 有些人在路上溜达。 |
|
sentences: |
|
- Folk går |
|
- Otururken gitar çalan adam. |
|
- ארה"ב קבעה שסוריה השתמשה בנשק כימי |
|
- source_sentence: 緬甸以前稱為緬甸。 |
|
sentences: |
|
- 缅甸以前叫缅甸。 |
|
- This is very contradictory. |
|
- 한 남자가 아기를 안고 의자에 앉아 잠들어 있다. |
|
- source_sentence: אדם כותב. |
|
sentences: |
|
- האדם כותב. |
|
- questa non è una risposta. |
|
- 7 שוטרים נהרגו ו-4 שוטרים נפצעו. |
|
- source_sentence: הם מפחדים. |
|
sentences: |
|
- liên quan đến rủi ro đáng kể; |
|
- A man is playing a guitar. |
|
- A man is playing a piano. |
|
- source_sentence: 一个女人正在洗澡。 |
|
sentences: |
|
- A woman is taking a bath. |
|
- En jente børster håret sitt |
|
- אדם מחלק תפוח אדמה. |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: Gameselo/STS-multilingual-mpnet-base-v2 |
|
results: |
|
- dataset: |
|
config: it |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.6847049462613332 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: es |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.6620948502618977 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: fr |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.7875616631597785 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: pl-en |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.7510805416538202 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: ar |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.6265329479575293 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: pl |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.4335552432730643 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: de |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.5774252131250034 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: tr |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.6383757017928495 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: es-it |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.6624635951676386 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: ru |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.5866853707548388 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: en |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.6385354535483773 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: zh-en |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.6537294853166558 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: zh |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.6319430830291571 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: fr-pl |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.8451542547285167 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: de-fr |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.5798716781400349 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: es-en |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.7518021273920814 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: de-en |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.5749790581441845 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: de-pl |
|
name: MTEB STS22 |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.44220332625465214 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STSBenchmark |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
split: test |
|
type: mteb/stsbenchmark-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.9762486352335524 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: en-tr |
|
name: MTEB STS17 |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.7987027653005363 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: ko-ko |
|
name: MTEB STS17 |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.9766336939338607 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: fr-en |
|
name: MTEB STS17 |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.9067607122592818 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: en-ar |
|
name: MTEB STS17 |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.7703365842088069 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: nl-en |
|
name: MTEB STS17 |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.9114826394926738 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: it-en |
|
name: MTEB STS17 |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.9246785886944904 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: ar-ar |
|
name: MTEB STS17 |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.8124393788492182 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: es-es |
|
name: MTEB STS17 |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.872701191632785 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: en-de |
|
name: MTEB STS17 |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.9109414091487618 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: es-en |
|
name: MTEB STS17 |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.8553203530552356 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: en-en |
|
name: MTEB STS17 |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: cosine_spearman |
|
value: 0.9378741534997558 |
|
task: |
|
type: STS |
|
--- |
|
|
|
## State-of-the-Art Results Comparison (MTEB STS Multilingual Leaderboard) |
|
|
|
| Dataset | State-of-the-art (Multi) | STSb-XLM-RoBERTa-base | STS Multilingual MPNet base v2 | |
|
|-------------------|--------------------------|-----------------------|--------------------------------------| |
|
| Average | 73.17 | 71.68 | **73.89** | |
|
| STS17 (ar-ar) | **81.87** | 80.43 | 81.24 | |
|
| STS17 (en-ar) | **81.22** | 76.3 | 77.03 | |
|
| STS17 (en-de) | 87.3 | 91.06 | **91.09** | |
|
| STS17 (en-tr) | 77.18 | **80.74** | 79.87 | |
|
| STS17 (es-en) | **88.24** | 83.09 | 85.53 | |
|
| STS17 (es-es) | **88.25** | 84.16 | 87.27 | |
|
| STS17 (fr-en) | 88.06 | **91.33** | 90.68 | |
|
| STS17 (it-en) | 89.68 | **92.87** | 92.47 | |
|
| STS17 (ko-ko) | 83.69 | **97.67** | 97.66 | |
|
| STS17 (nl-en) | 88.25 | **92.13** | 91.15 | |
|
| STS22 (ar) | 58.67 | 58.67 | **62.66** | |
|
| STS22 (de) | **60.12** | 52.17 | 57.74 | |
|
| STS22 (de-en) | **60.92** | 58.5 | 57.5 | |
|
| STS22 (de-fr) | **67.79** | 51.28 | 57.99 | |
|
| STS22 (de-pl) | **58.69** | 44.56 | 44.22 | |
|
| STS22 (es) | **68.57** | 63.68 | 66.21 | |
|
| STS22 (es-en) | **78.8** | 70.65 | 75.18 | |
|
| STS22 (es-it) | **75.04** | 60.88 | 66.25 | |
|
| STS22 (fr) | **83.75** | 76.46 | 78.76 | |
|
| STS22 (fr-pl) | 84.52 | 84.52 | **84.52** | |
|
| STS22 (it) | **79.28** | 66.73 | 68.47 | |
|
| STS22 (pl) | 42.08 | 41.18 | **43.36** | |
|
| STS22 (pl-en) | **77.5** | 64.35 | 75.11 | |
|
| STS22 (ru) | **61.71** | 58.59 | 58.67 | |
|
| STS22 (tr) | **68.72** | 57.52 | 63.84 | |
|
| STS22 (zh-en) | **71.88** | 60.69 | 65.37 | |
|
| STSb | 89.86 | 95.05 | **95.15** | |
|
|
|
**Bold** indicates the best result in each row. |
|
|
|
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 79f2382ceacceacdf38563d7c5d16b9ff8d725d6 --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Gameselo/STS-multilingual-mpnet-base-v2") |
|
# Run inference |
|
sentences = [ |
|
'一个女人正在洗澡。', |
|
'A woman is taking a bath.', |
|
'En jente børster håret sitt', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.9551 | |
|
| **spearman_cosine** | **0.9593** | |
|
| pearson_manhattan | 0.927 | |
|
| spearman_manhattan | 0.9383 | |
|
| pearson_euclidean | 0.9278 | |
|
| spearman_euclidean | 0.9394 | |
|
| pearson_dot | 0.876 | |
|
| spearman_dot | 0.8865 | |
|
| pearson_max | 0.9551 | |
|
| spearman_max | 0.9593 | |
|
|
|
#### Evalutation results vs SOTA results |
|
* Dataset: `sts-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.948 | |
|
| **spearman_cosine** | **0.9515** | |
|
| pearson_manhattan | 0.9252 | |
|
| spearman_manhattan | 0.9352 | |
|
| pearson_euclidean | 0.9258 | |
|
| spearman_euclidean | 0.9364 | |
|
| pearson_dot | 0.8443 | |
|
| spearman_dot | 0.8435 | |
|
| pearson_max | 0.948 | |
|
| spearman_max | 0.9515 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 226,547 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 20.05 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 19.94 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 1.92</li><li>max: 398.6</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | label | |
|
|:-------------------------------------------------------------------|:----------------------------------------------------------------|:---------------------------------| |
|
| <code>Bir kadın makineye dikiş dikiyor.</code> | <code>Bir kadın biraz et ekiyor.</code> | <code>0.12</code> | |
|
| <code>Snowden 'gegeven vluchtelingendocument door Ecuador'.</code> | <code>Snowden staat op het punt om uit Moskou te vliegen</code> | <code>0.24000000953674316</code> | |
|
| <code>Czarny pies idzie mostem przez wodę</code> | <code>Czarny pies nie idzie mostem przez wodę</code> | <code>0.74000000954</code> | |
|
* Loss: [<code>AnglELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_angle_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 256 |
|
- `per_device_eval_batch_size`: 256 |
|
- `num_train_epochs`: 10 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 256 |
|
- `per_device_eval_batch_size`: 256 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 10 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | |
|
|:------:|:----:|:-------------:|:-----------------------:|:------------------------:| |
|
| 0.5650 | 500 | 10.9426 | - | - | |
|
| 1.0 | 885 | - | 0.9202 | - | |
|
| 1.1299 | 1000 | 9.7184 | - | - | |
|
| 1.6949 | 1500 | 9.5348 | - | - | |
|
| 2.0 | 1770 | - | 0.9400 | - | |
|
| 2.2599 | 2000 | 9.4412 | - | - | |
|
| 2.8249 | 2500 | 9.3097 | - | - | |
|
| 3.0 | 2655 | - | 0.9489 | - | |
|
| 3.3898 | 3000 | 9.2357 | - | - | |
|
| 3.9548 | 3500 | 9.1594 | - | - | |
|
| 4.0 | 3540 | - | 0.9528 | - | |
|
| 4.5198 | 4000 | 9.0963 | - | - | |
|
| 5.0 | 4425 | - | 0.9553 | - | |
|
| 5.0847 | 4500 | 9.0382 | - | - | |
|
| 5.6497 | 5000 | 8.9837 | - | - | |
|
| 6.0 | 5310 | - | 0.9567 | - | |
|
| 6.2147 | 5500 | 8.9403 | - | - | |
|
| 6.7797 | 6000 | 8.8841 | - | - | |
|
| 7.0 | 6195 | - | 0.9581 | - | |
|
| 7.3446 | 6500 | 8.8513 | - | - | |
|
| 7.9096 | 7000 | 8.81 | - | - | |
|
| 8.0 | 7080 | - | 0.9582 | - | |
|
| 8.4746 | 7500 | 8.8069 | - | - | |
|
| 9.0 | 7965 | - | 0.9589 | - | |
|
| 9.0395 | 8000 | 8.7616 | - | - | |
|
| 9.6045 | 8500 | 8.7521 | - | - | |
|
| 10.0 | 8850 | - | 0.9593 | 0.6266 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.9.7 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.40.1 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.29.3 |
|
- Datasets: 2.19.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### AnglELoss |
|
```bibtex |
|
@misc{li2023angleoptimized, |
|
title={AnglE-optimized Text Embeddings}, |
|
author={Xianming Li and Jing Li}, |
|
year={2023}, |
|
eprint={2309.12871}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |