Gameselo's picture
Update README.md
f2ce457 verified
|
raw
history blame
27.3 kB
metadata
model-index:
  - name: Gameselo/STS-multilingual-mpnet-base-v2
    results:
      - dataset:
          config: it
          name: MTEB STS22
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.6847049462613332
        task:
          type: STS
      - dataset:
          config: es
          name: MTEB STS22
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.6620948502618977
        task:
          type: STS
      - dataset:
          config: fr
          name: MTEB STS22
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.7875616631597785
        task:
          type: STS
      - dataset:
          config: pl-en
          name: MTEB STS22
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.7510805416538202
        task:
          type: STS
      - dataset:
          config: ar
          name: MTEB STS22
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.6265329479575293
        task:
          type: STS
      - dataset:
          config: pl
          name: MTEB STS22
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.4335552432730643
        task:
          type: STS
      - dataset:
          config: de
          name: MTEB STS22
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.5774252131250034
        task:
          type: STS
      - dataset:
          config: tr
          name: MTEB STS22
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.6383757017928495
        task:
          type: STS
      - dataset:
          config: es-it
          name: MTEB STS22
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.6624635951676386
        task:
          type: STS
      - dataset:
          config: ru
          name: MTEB STS22
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.5866853707548388
        task:
          type: STS
      - dataset:
          config: en
          name: MTEB STS22
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.6385354535483773
        task:
          type: STS
      - dataset:
          config: zh-en
          name: MTEB STS22
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.6537294853166558
        task:
          type: STS
      - dataset:
          config: zh
          name: MTEB STS22
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.6319430830291571
        task:
          type: STS
      - dataset:
          config: fr-pl
          name: MTEB STS22
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.8451542547285167
        task:
          type: STS
      - dataset:
          config: de-fr
          name: MTEB STS22
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.5798716781400349
        task:
          type: STS
      - dataset:
          config: es-en
          name: MTEB STS22
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.7518021273920814
        task:
          type: STS
      - dataset:
          config: de-en
          name: MTEB STS22
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.5749790581441845
        task:
          type: STS
      - dataset:
          config: de-pl
          name: MTEB STS22
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.44220332625465214
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STSBenchmark
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
          split: test
          type: mteb/stsbenchmark-sts
        metrics:
          - type: cosine_spearman
            value: 0.9762486352335524
        task:
          type: STS
      - dataset:
          config: en-tr
          name: MTEB STS17
          revision: faeb762787bd10488a50c8b5be4a3b82e411949c
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.7987027653005363
        task:
          type: STS
      - dataset:
          config: ko-ko
          name: MTEB STS17
          revision: faeb762787bd10488a50c8b5be4a3b82e411949c
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.9766336939338607
        task:
          type: STS
      - dataset:
          config: fr-en
          name: MTEB STS17
          revision: faeb762787bd10488a50c8b5be4a3b82e411949c
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.9067607122592818
        task:
          type: STS
      - dataset:
          config: en-ar
          name: MTEB STS17
          revision: faeb762787bd10488a50c8b5be4a3b82e411949c
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.7703365842088069
        task:
          type: STS
      - dataset:
          config: nl-en
          name: MTEB STS17
          revision: faeb762787bd10488a50c8b5be4a3b82e411949c
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.9114826394926738
        task:
          type: STS
      - dataset:
          config: it-en
          name: MTEB STS17
          revision: faeb762787bd10488a50c8b5be4a3b82e411949c
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.9246785886944904
        task:
          type: STS
      - dataset:
          config: ar-ar
          name: MTEB STS17
          revision: faeb762787bd10488a50c8b5be4a3b82e411949c
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.8124393788492182
        task:
          type: STS
      - dataset:
          config: es-es
          name: MTEB STS17
          revision: faeb762787bd10488a50c8b5be4a3b82e411949c
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.872701191632785
        task:
          type: STS
      - dataset:
          config: en-de
          name: MTEB STS17
          revision: faeb762787bd10488a50c8b5be4a3b82e411949c
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.9109414091487618
        task:
          type: STS
      - dataset:
          config: es-en
          name: MTEB STS17
          revision: faeb762787bd10488a50c8b5be4a3b82e411949c
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.8553203530552356
        task:
          type: STS
      - dataset:
          config: en-en
          name: MTEB STS17
          revision: faeb762787bd10488a50c8b5be4a3b82e411949c
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cosine_spearman
            value: 0.9378741534997558
        task:
          type: STS
language: []
library_name: sentence-transformers
tags:
  - mteb
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dataset_size:100K<n<1M
  - loss:AnglELoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
  - source_sentence: 有些人在路上溜达。
    sentences:
      - Folk går
      - Otururken gitar çalan adam.
      - ארה"ב קבעה שסוריה השתמשה בנשק כימי
  - source_sentence: 緬甸以前稱為緬甸。
    sentences:
      - 缅甸以前叫缅甸。
      - This is very contradictory.
      -  남자가 아기를 안고 의자에 앉아 잠들어 있다.
  - source_sentence: אדם כותב.
    sentences:
      - האדם כותב.
      - questa non è una risposta.
      - 7 שוטרים נהרגו ו-4 שוטרים נפצעו.
  - source_sentence: הם מפחדים.
    sentences:
      - liên quan đến rủi ro đáng kể;
      - A man is playing a guitar.
      - A man is playing a piano.
  - source_sentence: 一个女人正在洗澡。
    sentences:
      - A woman is taking a bath.
      - En jente børster håret sitt
      - אדם מחלק תפוח אדמה.
pipeline_tag: sentence-similarity

State-of-the-Art Results Comparison (MTEB STS Multilingual Leaderboard)

Dataset State-of-the-art (Multi) STSb-XLM-RoBERTa-base STS Multilingual MPNet base v2
Average 73.17 71.68 73.89
STS17 (ar-ar) 81.87 80.43 81.24
STS17 (en-ar) 81.22 76.3 77.03
STS17 (en-de) 87.3 91.06 91.09
STS17 (en-tr) 77.18 80.74 79.87
STS17 (es-en) 88.24 83.09 85.53
STS17 (es-es) 88.25 84.16 87.27
STS17 (fr-en) 88.06 91.33 90.68
STS17 (it-en) 89.68 92.87 92.47
STS17 (ko-ko) 83.69 97.67 97.66
STS17 (nl-en) 88.25 92.13 91.15
STS22 (ar) 58.67 58.67 62.66
STS22 (de) 60.12 52.17 57.74
STS22 (de-en) 60.92 58.5 57.5
STS22 (de-fr) 67.79 51.28 57.99
STS22 (de-pl) 58.69 44.56 44.22
STS22 (es) 68.57 63.68 66.21
STS22 (es-en) 78.8 70.65 75.18
STS22 (es-it) 75.04 60.88 66.25
STS22 (fr) 83.75 76.46 78.76
STS22 (fr-pl) 84.52 84.52 84.52
STS22 (it) 79.28 66.73 68.47
STS22 (pl) 42.08 41.18 43.36
STS22 (pl-en) 77.5 64.35 75.11
STS22 (ru) 61.71 58.59 58.67
STS22 (tr) 68.72 57.52 63.84
STS22 (zh-en) 71.88 60.69 65.37
STSb 89.86 95.05 95.15

Bold indicates the best result in each row.

SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Gameselo/STS-multilingual-mpnet-base-v2")
# Run inference
sentences = [
    '一个女人正在洗澡。',
    'A woman is taking a bath.',
    'En jente børster håret sitt',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.9551
spearman_cosine 0.9593
pearson_manhattan 0.927
spearman_manhattan 0.9383
pearson_euclidean 0.9278
spearman_euclidean 0.9394
pearson_dot 0.876
spearman_dot 0.8865
pearson_max 0.9551
spearman_max 0.9593

Evalutation results vs SOTA results

Metric Value
pearson_cosine 0.948
spearman_cosine 0.9515
pearson_manhattan 0.9252
spearman_manhattan 0.9352
pearson_euclidean 0.9258
spearman_euclidean 0.9364
pearson_dot 0.8443
spearman_dot 0.8435
pearson_max 0.948
spearman_max 0.9515

Training Details

Training Dataset

Unnamed Dataset

  • Size: 226,547 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 3 tokens
    • mean: 20.05 tokens
    • max: 128 tokens
    • min: 4 tokens
    • mean: 19.94 tokens
    • max: 128 tokens
    • min: 0.0
    • mean: 1.92
    • max: 398.6
  • Samples:
    sentence_0 sentence_1 label
    Bir kadın makineye dikiş dikiyor. Bir kadın biraz et ekiyor. 0.12
    Snowden 'gegeven vluchtelingendocument door Ecuador'. Snowden staat op het punt om uit Moskou te vliegen 0.24000000953674316
    Czarny pies idzie mostem przez wodę Czarny pies nie idzie mostem przez wodę 0.74000000954
  • Loss: AnglELoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_angle_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • num_train_epochs: 10
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • prediction_loss_only: True
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss sts-dev_spearman_cosine sts-test_spearman_cosine
0.5650 500 10.9426 - -
1.0 885 - 0.9202 -
1.1299 1000 9.7184 - -
1.6949 1500 9.5348 - -
2.0 1770 - 0.9400 -
2.2599 2000 9.4412 - -
2.8249 2500 9.3097 - -
3.0 2655 - 0.9489 -
3.3898 3000 9.2357 - -
3.9548 3500 9.1594 - -
4.0 3540 - 0.9528 -
4.5198 4000 9.0963 - -
5.0 4425 - 0.9553 -
5.0847 4500 9.0382 - -
5.6497 5000 8.9837 - -
6.0 5310 - 0.9567 -
6.2147 5500 8.9403 - -
6.7797 6000 8.8841 - -
7.0 6195 - 0.9581 -
7.3446 6500 8.8513 - -
7.9096 7000 8.81 - -
8.0 7080 - 0.9582 -
8.4746 7500 8.8069 - -
9.0 7965 - 0.9589 -
9.0395 8000 8.7616 - -
9.6045 8500 8.7521 - -
10.0 8850 - 0.9593 0.6266

Framework Versions

  • Python: 3.9.7
  • Sentence Transformers: 3.0.0
  • Transformers: 4.40.1
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.29.3
  • Datasets: 2.19.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

AnglELoss

@misc{li2023angleoptimized,
    title={AnglE-optimized Text Embeddings}, 
    author={Xianming Li and Jing Li},
    year={2023},
    eprint={2309.12871},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}