Gemmar's picture
End of training
0e8822d
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: LugandaASRwav20Vec1B
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: lg
          split: validation
          args: lg
        metrics:
          - name: Wer
            type: wer
            value: 0.23043478260869565

LugandaASRwav20Vec1B

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1854
  • Wer: 0.2304

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 24
  • total_train_batch_size: 96
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Wer
4.303 0.14 100 2.1141 1.0
0.7155 0.27 200 0.5656 0.6752
0.4493 0.41 300 0.4402 0.5607
0.3964 0.54 400 0.3918 0.5114
0.3646 0.68 500 0.3601 0.4592
0.3294 0.81 600 0.3381 0.4467
0.3339 0.95 700 0.3340 0.4266
0.2893 1.08 800 0.2913 0.3670
0.2743 1.22 900 0.2854 0.3600
0.262 1.36 1000 0.2666 0.3318
0.2545 1.49 1100 0.2601 0.3341
0.2437 1.63 1200 0.2488 0.3152
0.2235 1.76 1300 0.2416 0.3015
0.2188 1.9 1400 0.2330 0.2902
0.2054 2.03 1500 0.2218 0.2750
0.1743 2.17 1600 0.2153 0.2672
0.1722 2.3 1700 0.2098 0.2575
0.1656 2.44 1800 0.2011 0.2538
0.1608 2.58 1900 0.2000 0.2475
0.1574 2.71 2000 0.1937 0.2428
0.1531 2.85 2100 0.1882 0.2347
0.1451 2.98 2200 0.1854 0.2304

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.0
  • Tokenizers 0.13.3