whisper-base-nl-1 / README.md
GerwinVanGiessen's picture
Update README.md
43cd005 verified
---
base_model: openai/whisper-base
datasets:
- mozilla-foundation/common_voice_17_0
language:
- nl
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: Whisper Base NL
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_17_0
config: nl
split: test
args: 'config: nl, split: test'
metrics:
- type: wer
value: 19.0031
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Base NL
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.343928
- Wer: 19.003155
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 7500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Step | Validation Loss | Wer |
|:-------------:|:----:|:---------------:|:-------:|
| 0.3639 | 500 | 0.396971 | 24.3028 |
| 0.2625 | 1000 | 0.358340 | 22.5210 |
| 0.2212 | 1500 | 0.341232 | 21.0322 |
| 0.1455 | 2000 | 0.330033 | 20.2046 |
| 0.1406 | 2500 | 0.324484 | 20.0508 |
| 0.1244 | 3000 | 0.321562 | 19.5279 |
| 0.0848 | 3500 | 0.321506 | 19.5114 |
| 0.0844 | 4000 | 0.316492 | 19.1462 |
| 0.0731 | 4500 | 0.321992 | 19.0167 |
| 0.0515 | 5000 | 0.324720 | 19.1492 |
| 0.0532 | 5500 | 0.324773 | 19.0148 |
| 0.0426 | 6000 | 0.332404 | 19.0576 |
| 0.0328 | 6500 | 0.334900 | 18.8249 |
| 0.0327 | 7000 | 0.335876 | 19.0080 |
| 0.0252 | 7500 | 0.343928 | 19.0031 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1