|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mT5_multilingual_XLSum-sumarizacao-PTBR |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mT5_multilingual_XLSum-sumarizacao-PTBR |
|
|
|
This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3870 |
|
- Rouge1: 42.0195 |
|
- Rouge2: 24.9493 |
|
- Rougel: 32.3653 |
|
- Rougelsum: 37.9982 |
|
- Gen Len: 77.0 |
|
|
|
## Let's see the model in action! |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip())) |
|
|
|
model_name = "GiordanoB/mT5_multilingual_XLSum-sumarizacao-PTBR" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
|
|
input_ids = tokenizer( |
|
[WHITESPACE_HANDLER(sumariosDuplos[i])], |
|
return_tensors="pt", |
|
padding="max_length", |
|
truncation=True, |
|
max_length=512 |
|
)["input_ids"] |
|
|
|
output_ids = model.generate( |
|
input_ids=input_ids, |
|
max_length=200, |
|
min_length=75, |
|
no_repeat_ngram_size=2, |
|
num_beams=5 |
|
)[0] |
|
|
|
summary = tokenizer.decode( |
|
output_ids, |
|
skip_special_tokens=True, |
|
clean_up_tokenization_spaces=False |
|
) |
|
|
|
sumariosFinal.append(summary) |
|
print(i,"\n",summary,"\n") |
|
``` |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| No log | 1.0 | 15 | 1.5687 | 32.2316 | 18.9289 | 23.918 | 27.7216 | 51.5714 | |
|
| No log | 2.0 | 30 | 1.4530 | 41.2297 | 26.1883 | 30.8012 | 37.1727 | 69.5714 | |
|
| No log | 3.0 | 45 | 1.4043 | 40.8986 | 24.4993 | 31.349 | 36.8782 | 72.2143 | |
|
| No log | 4.0 | 60 | 1.3908 | 42.1019 | 25.5555 | 32.9018 | 38.0202 | 74.5 | |
|
| No log | 5.0 | 75 | 1.3870 | 42.0195 | 24.9493 | 32.3653 | 37.9982 | 77.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.11.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|