GlycerinLOL's picture
Model save
c8ee3bb verified
|
raw
history blame
3.79 kB
metadata
license: apache-2.0
base_model: facebook/bart-large
tags:
  - generated_from_trainer
metrics:
  - rouge
  - precision
  - recall
  - f1
model-index:
  - name: LLM_Teached_Bart_100k
    results: []

LLM_Teached_Bart_100k

This model is a fine-tuned version of facebook/bart-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4623
  • Rouge1: 0.4678
  • Rouge2: 0.2472
  • Rougel: 0.4081
  • Rougelsum: 0.4082
  • Gen Len: 19.8816
  • Precision: 0.9185
  • Recall: 0.8957
  • F1: 0.9068

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 24
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 96
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Precision Recall F1
1.6328 1.0 1041 1.4801 0.448 0.2243 0.385 0.385 19.8782 0.9134 0.893 0.9029
1.4598 2.0 2083 1.4051 0.4428 0.2273 0.3851 0.385 19.9344 0.9147 0.8903 0.9022
1.3402 3.0 3125 1.3840 0.4498 0.2318 0.3921 0.392 19.95 0.9158 0.8918 0.9034
1.2446 4.0 4167 1.3682 0.4604 0.2405 0.4014 0.4014 19.884 0.9169 0.8944 0.9054
1.1651 5.0 5208 1.3695 0.4594 0.2401 0.3995 0.3995 19.894 0.9173 0.8942 0.9055
1.1002 6.0 6250 1.3783 0.4607 0.2423 0.4014 0.4014 19.9118 0.9166 0.8945 0.9053
1.0427 7.0 7292 1.3851 0.462 0.2432 0.4028 0.4028 19.9075 0.9172 0.8946 0.9056
0.9881 8.0 8334 1.3911 0.4635 0.2442 0.4038 0.4037 19.9071 0.9177 0.8947 0.9059
0.9435 9.0 9375 1.4075 0.468 0.2471 0.4085 0.4084 19.8805 0.918 0.8959 0.9067
0.9035 10.0 10417 1.4125 0.4675 0.248 0.4085 0.4086 19.8811 0.9178 0.8957 0.9064
0.8702 11.0 11459 1.4219 0.4646 0.2455 0.405 0.4051 19.8947 0.9181 0.895 0.9063
0.8458 12.0 12501 1.4339 0.4643 0.2447 0.4055 0.4055 19.8985 0.9177 0.8952 0.9061
0.8207 13.0 13542 1.4430 0.4671 0.2463 0.4068 0.4069 19.9053 0.9182 0.8952 0.9064
0.7987 14.0 14584 1.4495 0.4633 0.2455 0.4046 0.4047 19.918 0.9179 0.8944 0.9059
0.787 15.0 15626 1.4560 0.4666 0.2471 0.407 0.4072 19.8956 0.9182 0.8953 0.9064
0.772 15.99 16656 1.4623 0.4678 0.2472 0.4081 0.4082 19.8816 0.9185 0.8957 0.9068

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.15.0