|
--- |
|
license: apache-2.0 |
|
base_model: facebook/bart-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: LLM_Teached_Bart_From_Scratch |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# LLM_Teached_Bart_From_Scratch |
|
|
|
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4999 |
|
- Rouge1: 0.4331 |
|
- Rouge2: 0.2164 |
|
- Rougel: 0.3724 |
|
- Rougelsum: 0.3725 |
|
- Gen Len: 19.9255 |
|
- Precision: 0.9125 |
|
- Recall: 0.8885 |
|
- F1: 0.9002 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:---------:|:------:|:------:| |
|
| No log | 1.0 | 390 | 1.5709 | 0.4119 | 0.2002 | 0.3529 | 0.3527 | 19.9709 | 0.9093 | 0.8846 | 0.8966 | |
|
| 1.8155 | 2.0 | 781 | 1.5361 | 0.4331 | 0.2157 | 0.3717 | 0.3717 | 19.9185 | 0.9123 | 0.8889 | 0.9003 | |
|
| 1.5875 | 3.0 | 1172 | 1.5030 | 0.4263 | 0.2129 | 0.3671 | 0.3673 | 19.9545 | 0.9117 | 0.8871 | 0.899 | |
|
| 1.4978 | 3.99 | 1560 | 1.4999 | 0.4331 | 0.2164 | 0.3724 | 0.3725 | 19.9255 | 0.9125 | 0.8885 | 0.9002 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.15.0 |
|
|