GlycerinLOL's picture
Model save
188adc4 verified
|
raw
history blame
2.72 kB
metadata
base_model: google/pegasus-xsum
tags:
  - generated_from_trainer
metrics:
  - rouge
  - precision
  - recall
  - f1
model-index:
  - name: LLM_Teached_Pegasus_100k
    results: []

LLM_Teached_Pegasus_100k

This model is a fine-tuned version of google/pegasus-xsum on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5409
  • Rouge1: 0.4869
  • Rouge2: 0.2373
  • Rougel: 0.406
  • Rougelsum: 0.4058
  • Gen Len: 25.3851
  • Precision: 0.9131
  • Recall: 0.9117
  • F1: 0.9123

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Precision Recall F1
2.1501 1.0 781 1.7062 0.4566 0.209 0.3745 0.3744 25.4655 0.9082 0.9065 0.9072
1.7722 2.0 1562 1.6314 0.4712 0.2226 0.3906 0.3904 25.4298 0.9107 0.909 0.9097
1.7218 3.0 2343 1.5948 0.4776 0.2284 0.3965 0.3963 25.6569 0.9112 0.9103 0.9106
1.6668 4.0 3125 1.5708 0.481 0.2316 0.4002 0.4 25.3451 0.9122 0.9107 0.9112
1.6437 5.0 3906 1.5565 0.4844 0.2346 0.4034 0.4031 25.482 0.9127 0.9113 0.9118
1.6186 6.0 4687 1.5476 0.4852 0.236 0.4047 0.4044 25.4191 0.9129 0.9115 0.912
1.607 7.0 5468 1.5426 0.486 0.2367 0.4052 0.405 25.4949 0.9129 0.9118 0.9122
1.5972 8.0 6248 1.5409 0.4869 0.2373 0.406 0.4058 25.3851 0.9131 0.9117 0.9123

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.15.0