|
--- |
|
base_model: google/pegasus-xsum |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: LLM_Teached_Pegasus_100k |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# LLM_Teached_Pegasus_100k |
|
|
|
This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5004 |
|
- Rouge1: 0.4923 |
|
- Rouge2: 0.2429 |
|
- Rougel: 0.4134 |
|
- Rougelsum: 0.4134 |
|
- Gen Len: 25.1335 |
|
- Precision: 0.9143 |
|
- Recall: 0.9124 |
|
- F1: 0.9132 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 16 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | F1 | Gen Len | Validation Loss | Precision | Recall | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:------:|:-------:|:---------------:|:---------:|:------:|:------:|:------:|:------:|:---------:| |
|
| 2.1501 | 1.0 | 781 | 0.9072 | 25.4655 | 1.7062 | 0.9082 | 0.9065 | 0.4566 | 0.209 | 0.3745 | 0.3744 | |
|
| 1.7722 | 2.0 | 1562 | 0.9097 | 25.4298 | 1.6314 | 0.9107 | 0.909 | 0.4712 | 0.2226 | 0.3906 | 0.3904 | |
|
| 1.7218 | 3.0 | 2343 | 0.9106 | 25.6569 | 1.5948 | 0.9112 | 0.9103 | 0.4776 | 0.2284 | 0.3965 | 0.3963 | |
|
| 1.6668 | 4.0 | 3125 | 0.9112 | 25.3451 | 1.5708 | 0.9122 | 0.9107 | 0.481 | 0.2316 | 0.4002 | 0.4 | |
|
| 1.6437 | 5.0 | 3906 | 0.9118 | 25.482 | 1.5565 | 0.9127 | 0.9113 | 0.4844 | 0.2346 | 0.4034 | 0.4031 | |
|
| 1.6186 | 6.0 | 4687 | 0.912 | 25.4191 | 1.5476 | 0.9129 | 0.9115 | 0.4852 | 0.236 | 0.4047 | 0.4044 | |
|
| 1.607 | 7.0 | 5468 | 0.9122 | 25.4949 | 1.5426 | 0.9129 | 0.9118 | 0.486 | 0.2367 | 0.4052 | 0.405 | |
|
| 1.5972 | 8.0 | 6248 | 1.5380 | 0.4872 | 0.2387 | 0.407 | 0.4071 | 25.3836| 0.9131 | 0.9118 | 0.9123 | |
|
| 1.5836 | 9.0 | 7029 | 1.5273 | 0.4891 | 0.2399 | 0.4088 | 0.4089 | 25.4995| 0.9133 | 0.9122 | 0.9126 | |
|
| 1.5667 | 10.0 | 7810 | 1.5196 | 0.4906 | 0.2416 | 0.411 | 0.4112 | 25.3867| 0.9135 | 0.9123 | 0.9127 | |
|
| 1.5521 | 11.0 | 8592 | 1.5124 | 0.4899 | 0.2406 | 0.4102 | 0.4103 | 25.2191| 0.9137 | 0.912 | 0.9127 | |
|
| 1.5413 | 12.0 | 9373 | 1.5083 | 0.4914 | 0.2416 | 0.4118 | 0.412 | 25.3491| 0.9137 | 0.9123 | 0.9128 | |
|
| 1.5291 | 13.0 | 10154 | 1.5044 | 0.4913 | 0.2419 | 0.4118 | 0.4119 | 25.2082| 0.914 | 0.9123 | 0.913 | |
|
| 1.527 | 14.0 | 10935 | 1.5026 | 0.4917 | 0.2426 | 0.4126 | 0.4128 | 25.1069| 0.9141 | 0.9123 | 0.913 | |
|
| 1.5203 | 15.0 | 11717 | 1.5006 | 0.4921 | 0.243 | 0.4135 | 0.4136 | 25.1062| 0.9143 | 0.9123 | 0.9131 | |
|
| 1.5126 | 16.0 | 12496 | 1.5004 | 0.4923 | 0.2429 | 0.4134 | 0.4134 | 25.1335| 0.9143 | 0.9124 | 0.9132 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.15.0 |
|
|