metadata
base_model: google/pegasus-xsum
tags:
- generated_from_trainer
metrics:
- rouge
- precision
- recall
- f1
model-index:
- name: LLM_Teached_Pegasus_100k
results: []
LLM_Teached_Pegasus_100k
This model is a fine-tuned version of google/pegasus-xsum on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5004
- Rouge1: 0.4923
- Rouge2: 0.2429
- Rougel: 0.4134
- Rougelsum: 0.4134
- Gen Len: 25.1335
- Precision: 0.9143
- Recall: 0.9124
- F1: 0.9132
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | F1 | Gen Len | Validation Loss | Precision | Recall | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|---|---|---|---|
2.1501 | 1.0 | 781 | 0.9072 | 25.4655 | 1.7062 | 0.9082 | 0.9065 | 0.4566 | 0.209 | 0.3745 | 0.3744 |
1.7722 | 2.0 | 1562 | 0.9097 | 25.4298 | 1.6314 | 0.9107 | 0.909 | 0.4712 | 0.2226 | 0.3906 | 0.3904 |
1.7218 | 3.0 | 2343 | 0.9106 | 25.6569 | 1.5948 | 0.9112 | 0.9103 | 0.4776 | 0.2284 | 0.3965 | 0.3963 |
1.6668 | 4.0 | 3125 | 0.9112 | 25.3451 | 1.5708 | 0.9122 | 0.9107 | 0.481 | 0.2316 | 0.4002 | 0.4 |
1.6437 | 5.0 | 3906 | 0.9118 | 25.482 | 1.5565 | 0.9127 | 0.9113 | 0.4844 | 0.2346 | 0.4034 | 0.4031 |
1.6186 | 6.0 | 4687 | 0.912 | 25.4191 | 1.5476 | 0.9129 | 0.9115 | 0.4852 | 0.236 | 0.4047 | 0.4044 |
1.607 | 7.0 | 5468 | 0.9122 | 25.4949 | 1.5426 | 0.9129 | 0.9118 | 0.486 | 0.2367 | 0.4052 | 0.405 |
1.5972 | 8.0 | 6248 | 1.5380 | 0.4872 | 0.2387 | 0.407 | 0.4071 | 25.3836 | 0.9131 | 0.9118 | 0.9123 |
1.5836 | 9.0 | 7029 | 1.5273 | 0.4891 | 0.2399 | 0.4088 | 0.4089 | 25.4995 | 0.9133 | 0.9122 | 0.9126 |
1.5667 | 10.0 | 7810 | 1.5196 | 0.4906 | 0.2416 | 0.411 | 0.4112 | 25.3867 | 0.9135 | 0.9123 | 0.9127 |
1.5521 | 11.0 | 8592 | 1.5124 | 0.4899 | 0.2406 | 0.4102 | 0.4103 | 25.2191 | 0.9137 | 0.912 | 0.9127 |
1.5413 | 12.0 | 9373 | 1.5083 | 0.4914 | 0.2416 | 0.4118 | 0.412 | 25.3491 | 0.9137 | 0.9123 | 0.9128 |
1.5291 | 13.0 | 10154 | 1.5044 | 0.4913 | 0.2419 | 0.4118 | 0.4119 | 25.2082 | 0.914 | 0.9123 | 0.913 |
1.527 | 14.0 | 10935 | 1.5026 | 0.4917 | 0.2426 | 0.4126 | 0.4128 | 25.1069 | 0.9141 | 0.9123 | 0.913 |
1.5203 | 15.0 | 11717 | 1.5006 | 0.4921 | 0.243 | 0.4135 | 0.4136 | 25.1062 | 0.9143 | 0.9123 | 0.9131 |
1.5126 | 16.0 | 12496 | 1.5004 | 0.4923 | 0.2429 | 0.4134 | 0.4134 | 25.1335 | 0.9143 | 0.9124 | 0.9132 |
Framework versions
- Transformers 4.36.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.15.0