GogetaBlueMUI's picture
End of training
0122f89 verified
metadata
library_name: transformers
language:
  - ur
license: apache-2.0
base_model: GogetaBlueMUI/whisper-medium-ur-jalandhary
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Medium Ur - Muhammad Abdullah on Fleurs
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Fleurs Urdu
          type: google/fleurs
          config: ur_pk
          split: test
          args: 'config: ur_pk, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 23.004972768174284

Whisper Medium Ur - Muhammad Abdullah on Fleurs

This model is a fine-tuned version of GogetaBlueMUI/whisper-medium-ur-jalandhary on the Fleurs Urdu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4401
  • Wer: 23.0050

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 60
  • training_steps: 600
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1051 0.7576 100 0.3871 23.5851
0.0437 1.5152 200 0.4073 23.7390
0.0209 2.2727 300 0.4184 23.1944
0.0199 3.0303 400 0.4228 23.0523
0.009 3.7879 500 0.4347 23.3602
0.0048 4.5455 600 0.4401 23.0050

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.2
  • Tokenizers 0.21.0