whisper-base-1m.hr

This model is a fine-tuned version of openai/whisper-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2480
  • Wer: 17.3979

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6.25e-06
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 800
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2907 0.0650 1000 0.3627 25.6512
0.2591 0.1300 2000 0.3494 26.1731
0.2394 0.1950 3000 0.3402 24.5520
0.2234 0.2600 4000 0.3332 24.0163
0.2241 0.3250 5000 0.3254 23.9978
0.2173 0.3900 6000 0.3178 23.2126
0.2108 0.4550 7000 0.3121 22.7970
0.2129 0.5200 8000 0.3069 22.2520
0.1993 0.5849 9000 0.3011 22.4044
0.2009 0.6499 10000 0.2968 21.8917
0.2 0.7149 11000 0.2930 21.6747
0.1981 0.7799 12000 0.2903 21.4391
0.1915 0.8449 13000 0.2879 20.4184
0.1902 0.9099 14000 0.2836 21.3052
0.1881 0.9749 15000 0.2803 20.9449
0.1706 1.0399 16000 0.2805 20.8064
0.1746 1.1049 17000 0.2787 20.7833
0.1716 1.1699 18000 0.2782 19.5825
0.172 1.2349 19000 0.2757 20.2476
0.1666 1.2999 20000 0.2740 20.2845
0.1574 1.3649 21000 0.2737 19.4763
0.1668 1.4299 22000 0.2705 19.5317
0.1697 1.4949 23000 0.2696 19.7210
0.1593 1.5599 24000 0.2665 19.3977
0.1665 1.6249 25000 0.2659 19.0052
0.1592 1.6898 26000 0.2653 18.3863
0.1629 1.7548 27000 0.2608 18.9775
0.1588 1.8198 28000 0.2612 18.9544
0.1559 1.8848 29000 0.2615 19.6379
0.1552 1.9498 30000 0.2590 18.3909
0.1452 2.0148 31000 0.2593 18.1969
0.1485 2.0798 32000 0.2590 18.1554
0.1464 2.1448 33000 0.2590 18.5433
0.1446 2.2098 34000 0.2583 17.9060
0.1361 2.2748 35000 0.2573 18.6265
0.1434 2.3398 36000 0.2585 18.1969
0.1426 2.4048 37000 0.2557 17.6935
0.1497 2.4698 38000 0.2552 17.9845
0.14 2.5348 39000 0.2558 18.3586
0.1428 2.5998 40000 0.2549 17.2640
0.147 2.6648 41000 0.2539 18.0260
0.1411 2.7298 42000 0.2531 17.4626
0.1441 2.7947 43000 0.2528 18.8989
0.1521 2.8597 44000 0.2518 17.6889
0.139 2.9247 45000 0.2515 18.4925
0.1402 2.9897 46000 0.2507 17.3102
0.1337 3.0547 47000 0.2522 17.7120
0.131 3.1197 48000 0.2526 17.7674
0.1282 3.1847 49000 0.2530 17.7028
0.1289 3.2497 50000 0.2520 17.7258
0.1296 3.3147 51000 0.2514 18.3863
0.132 3.3797 52000 0.2512 17.9845
0.1354 3.4447 53000 0.2512 17.2963
0.13 3.5097 54000 0.2505 17.5734
0.1311 3.5747 55000 0.2507 17.7443
0.133 3.6397 56000 0.2491 16.7652
0.1317 3.7047 57000 0.2488 17.0931
0.1335 3.7697 58000 0.2489 18.2847
0.1334 3.8347 59000 0.2489 17.7305
0.1287 3.8996 60000 0.2480 17.8413
0.1259 3.9646 61000 0.2481 17.4210
0.1261 4.0296 62000 0.2495 17.3887
0.1247 4.0946 63000 0.2498 17.4995
0.1207 4.1596 64000 0.2495 17.3564
0.1219 4.2246 65000 0.2494 17.3102
0.1219 4.2896 66000 0.2493 17.1670
0.1258 4.3546 67000 0.2491 17.3148
0.1266 4.4196 68000 0.2488 17.1993
0.1267 4.4846 69000 0.2489 17.2132
0.1267 4.5496 70000 0.2483 17.3471
0.1245 4.6146 71000 0.2482 17.5088
0.126 4.6796 72000 0.2482 17.2317
0.122 4.7446 73000 0.2482 17.1301
0.1288 4.8096 74000 0.2483 17.3564
0.1254 4.8746 75000 0.2481 17.2409
0.1313 4.9396 76000 0.2480 17.3979

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
27
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for GoranS/whisper-base-1m.hr

Finetuned
(430)
this model