|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- govreport-summarization |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-gov-report-sum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: govreport-summarization |
|
type: govreport-summarization |
|
config: document |
|
split: test |
|
args: document |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 5.8729 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-gov-report-sum |
|
|
|
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the govreport-summarization dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.2385 |
|
- Rouge1: 5.8729 |
|
- Rouge2: 3.0763 |
|
- Rougel: 5.1016 |
|
- Rougelsum: 5.646 |
|
- Gen Len: 19.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 2.5801 | 1.0 | 2190 | 2.3211 | 5.6226 | 2.9142 | 4.9535 | 5.417 | 19.0 | |
|
| 2.5125 | 2.0 | 4380 | 2.2748 | 5.7982 | 3.0365 | 5.0726 | 5.5837 | 19.0 | |
|
| 2.453 | 3.0 | 6570 | 2.2545 | 5.8744 | 3.0997 | 5.1196 | 5.6524 | 19.0 | |
|
| 2.436 | 4.0 | 8760 | 2.2430 | 5.8669 | 3.0525 | 5.0849 | 5.631 | 19.0 | |
|
| 2.4144 | 5.0 | 10950 | 2.2385 | 5.8729 | 3.0763 | 5.1016 | 5.646 | 19.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.11.0+cu102 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |
|
|