Image Segmentation
Portuguese
English
Edit model card

PROJETO CultivaMelhor - Projeto Detecção de Áreas com probabilidade de alagamento

Feito por: André Júnior, Jonas Sales, Leandro Custódio, Mateus Rafael, Melyssa Rojas

Introdução

Nossa proposta é baseada em imagems de satélite, a qual usaríamos para determinar áreas de risco de inundação. O projeto utilizaria como parâmetro uma previsão do nível de chuva média da região e imagens de satélite do Sentinel-2.

Problema

Soluções tecnológicas que possam ser utilizadas não apenas para melhorar a precisão da identificação dos talhões, mas também para auxiliar na detecção de áreas com alto risco de inundação para auxilio urbano de comunidades locais e fornecimento de dados para recuperação rápida das áreas afetadas por desastres naturais.

Solução

A solução será uma plataforma web, na qual é possível inputar as leituras do satélite, bem como a previsão do nível de chuva na determinada região. Após a execução do modelo, poderá ser visualizada uma imagem contendo um mapa de calor referente as chances de ocorrer uma inundação.

Estratégia selecionada

Para realizar a predição, nosso modelo de visão computacional utilizará a estratégia da segmentação, pois com o uso desta abordagem, podemos classificar as áreas em específico com uma precisão de píxel a pixel.

Open Model Utilizado YOLOv8

Motivos para usar o YOLOv8 ser um bom modelo para usarmos:

  • Adaptabilidade às imagens do satélite;
  • Detecção de múltiplos objetos;
  • Detecção em tempo real das informações

Open Data

Foi utilizado o Open Data do Satelite do Sentinel LC1 do Hugging Face, dentre os motivos:

  • Não ocorreu a correção atmosférica, ou seja as imagens irão conter as nuvens (item principal da predição) sem transformação sob esses dados;

Entradas

  • Imagens de satélite do Sentinel-2;
  • Informações de previsão meteorológica.

Funcionamento do Modelo

Devido ao contexto se tratar de uma tarefa de segmentação semântica, e lembrando que está tarefa classifica pixel por pixel, o modelo segmentaria as regiões decorridas da imagem e colocaria uma distribuição de probabilidade analogando com as previsões de chuva.

Portanto, com a saída de uma matriz com as probabilidades do pixel, será necessário analisar com dados meterológicos para poder ter maior precisão da classificação da intensidade da chuva de tal região.

Funções:

Modelo de Segmentação Semântica:

  • Recebe imagens do satélite e proporciona como saída distribuição de probabilidades diante da intensidade de chuva;

Comparação com dados metereológicos:

  • Saída do modelo acima com a comparação de dados meterológicos para maior precisão da classificação da chuva diante de tal região, e assim avaliar o risco de desastres no Rio Grande do Sul;

Saídas

O modelo retornaria uma imagem contendo um 'mapa de calor', na qual as áreas com mais probabilidade de ocorrer o desastres teriam cores mais escuras.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Dataset used to train Grupo3/T_de_Talhao