NLP-HIBA_DisTEMIST_fine_tuned_bert-base-multilingual-cased

This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2057
  • Precision: 0.6288
  • Recall: 0.5579
  • F1: 0.5912
  • Accuracy: 0.9555

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 71 0.1547 0.5048 0.3774 0.4319 0.9430
No log 2.0 142 0.1542 0.5965 0.4071 0.4839 0.9495
No log 3.0 213 0.1369 0.5519 0.5160 0.5334 0.9516
No log 4.0 284 0.1435 0.5622 0.4989 0.5287 0.9512
No log 5.0 355 0.1542 0.5920 0.5575 0.5742 0.9536
No log 6.0 426 0.1625 0.6069 0.5663 0.5859 0.9546
No log 7.0 497 0.1779 0.5936 0.5830 0.5883 0.9526
0.0978 8.0 568 0.1827 0.6035 0.5784 0.5907 0.9546
0.0978 9.0 639 0.2026 0.6121 0.5685 0.5895 0.9546
0.0978 10.0 710 0.2057 0.6288 0.5579 0.5912 0.9555

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
19
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for GuCuChiara/NLP-HIBA_DisTEMIST_fine_tuned_bert-base-multilingual-cased

Finetuned
(645)
this model