NLP-HIBA_DisTEMIST_fine_tuned_biobert

This model is a fine-tuned version of monologg/biobert_v1.1_pubmed on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2325
  • Precision: 0.5394
  • Recall: 0.5010
  • F1: 0.5195
  • Accuracy: 0.9434

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 71 0.2200 0.2689 0.2813 0.2750 0.9147
No log 2.0 142 0.1895 0.4126 0.3834 0.3975 0.9308
No log 3.0 213 0.1813 0.5319 0.3667 0.4341 0.9389
No log 4.0 284 0.1746 0.5085 0.4395 0.4715 0.9410
No log 5.0 355 0.1942 0.4868 0.4697 0.4781 0.9382
No log 6.0 426 0.1975 0.5246 0.4860 0.5046 0.9413
No log 7.0 497 0.2066 0.5207 0.4897 0.5047 0.9415
0.122 8.0 568 0.2201 0.5232 0.4956 0.5090 0.9420
0.122 9.0 639 0.2358 0.5178 0.5048 0.5112 0.9418
0.122 10.0 710 0.2325 0.5394 0.5010 0.5195 0.9434

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
6
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for GuCuChiara/NLP-HIBA_DisTEMIST_fine_tuned_biobert

Finetuned
(1)
this model