wav2vec2-1b-E30_freq_pause_speed

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5381
  • Cer: 14.3033

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
9.3347 0.2580 200 3.0510 67.1170
1.6722 0.5160 400 1.7179 39.9495
1.1366 0.7741 600 1.4161 34.0343
0.9454 1.0321 800 1.0728 26.3217
0.8179 1.2901 1000 1.0363 26.1219
0.7504 1.5481 1200 0.9902 26.1748
0.676 1.8062 1400 0.9778 24.4008
0.6309 2.0642 1600 0.9562 24.5359
0.523 2.3222 1800 0.9541 24.5888
0.469 2.5802 2000 0.8640 22.1041
0.4512 2.8383 2200 0.7965 20.3595
0.3876 3.0963 2400 0.6971 18.5914
0.3249 3.3543 2600 0.6755 18.1450
0.2832 3.6123 2800 0.6407 16.8174
0.2836 3.8703 3000 0.6073 16.1125
0.2379 4.1284 3200 0.6392 16.3886
0.1937 4.3864 3400 0.5707 14.9965
0.1871 4.6444 3600 0.5454 14.7263
0.1713 4.9024 3800 0.5381 14.3033

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.1.post100
  • Datasets 2.19.1
  • Tokenizers 0.20.1
Downloads last month
5
Safetensors
Model size
964M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Gummybear05/wav2vec2-1b-E30_freq_pause_speed

Finetuned
(100)
this model