wav2vec2-1b-E30_freq_speed

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6382
  • Cer: 17.3637

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
29.1406 0.2580 200 16.8395 83.7289
10.9521 0.5160 400 4.7348 94.3550
9.351 0.7741 600 4.2935 92.1346
7.4517 1.0321 800 4.0701 79.2704
5.4533 1.2901 1000 3.5394 66.4767
3.4356 1.5481 1200 1.6827 37.0301
1.4001 1.8062 1400 1.3482 32.4953
1.063 2.0642 1600 1.1849 32.9359
0.8329 2.3222 1800 1.3395 32.4307
0.7532 2.5802 2000 1.1368 29.5700
0.6628 2.8383 2200 1.0047 28.0545
0.564 3.0963 2400 0.8462 24.4831
0.4531 3.3543 2600 0.7833 19.9366
0.3946 3.6123 2800 0.7219 18.7383
0.3829 3.8703 3000 0.7232 19.0848
0.3109 4.1284 3200 0.7258 19.6370
0.2561 4.3864 3400 0.6731 18.6736
0.2392 4.6444 3600 0.6570 17.9629
0.228 4.9024 3800 0.6382 17.3637

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.1.post100
  • Datasets 2.19.1
  • Tokenizers 0.20.1
Downloads last month
4
Safetensors
Model size
964M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Gummybear05/wav2vec2-1b-E30_freq_speed

Finetuned
(100)
this model