wav2vec2-1b-E50_freq_speed

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5279
  • Cer: 15.9833

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
27.5942 0.2580 200 15.1915 93.3799
4.8195 0.5160 400 5.0466 93.8381
4.6163 0.7741 600 4.6972 93.6149
4.4212 1.0321 800 4.1616 89.2270
3.6842 1.2901 1000 2.4339 49.4596
1.7035 1.5481 1200 1.3759 31.8550
1.1079 1.8062 1400 1.1419 29.9460
0.8743 2.0642 1600 1.0240 27.7256
0.6885 2.3222 1800 0.9708 28.9356
0.6163 2.5802 2000 0.8797 27.3555
0.5719 2.8383 2200 0.7727 24.1835
0.4769 3.0963 2400 0.7156 23.4962
0.384 3.3543 2600 0.6899 20.6180
0.3428 3.6123 2800 0.6663 21.0291
0.3288 3.8703 3000 0.5853 20.8353
0.2779 4.1284 3200 0.5770 18.0980
0.23 4.3864 3400 0.5491 16.7058
0.2244 4.6444 3600 0.5386 16.0538
0.2006 4.9024 3800 0.5279 15.9833

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.1.post100
  • Datasets 2.19.1
  • Tokenizers 0.20.1
Downloads last month
1
Safetensors
Model size
964M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Gummybear05/wav2vec2-1b-E50_freq_speed

Finetuned
(105)
this model