xcodec2 / vq /codec_encoder.py
yezhen
Initial commit
574a515
raw
history blame
9.98 kB
import sys
import torch
from torch import nn
import numpy as np
from vq.module import WNConv1d, EncoderBlock, ResLSTM
from vq.alias_free_torch import *
from vq import activations
from vq.bs_roformer5 import TransformerBlock
from torchtune.modules import RotaryPositionalEmbeddings
import vq.blocks as blocks
from torch.nn import utils
def init_weights(m):
if isinstance(m, nn.Conv1d):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
class CodecEncoder(nn.Module):
def __init__(self,
ngf=48,
use_rnn=True,
rnn_bidirectional=False,
rnn_num_layers=2,
up_ratios=(2, 2, 4, 4, 5),
dilations=(1, 3, 9),
out_channels=1024):
super().__init__()
self.hop_length = np.prod(up_ratios)
self.ngf = ngf
self.up_ratios = up_ratios
# Create first convolution
d_model = ngf
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
# Create EncoderBlocks that double channels as they downsample by `stride`
for i, stride in enumerate(up_ratios):
d_model *= 2
self.block += [EncoderBlock(d_model, stride=stride, dilations=dilations)]
# RNN
if use_rnn:
self.block += [
ResLSTM(d_model,
num_layers=rnn_num_layers,
bidirectional=rnn_bidirectional
)
]
# Create last convolution
self.block += [
Activation1d(activation=activations.SnakeBeta(d_model, alpha_logscale=True)),
WNConv1d(d_model, out_channels, kernel_size=3, padding=1),
]
# Wrap black into nn.Sequential
self.block = nn.Sequential(*self.block)
self.enc_dim = d_model
self.reset_parameters()
def forward(self, x):
out = self.block(x)
return out
def inference(self, x):
return self.block(x)
def remove_weight_norm(self):
"""Remove weight normalization module from all of the layers."""
def _remove_weight_norm(m):
try:
torch.nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(_remove_weight_norm)
def apply_weight_norm(self):
"""Apply weight normalization module from all of the layers."""
def _apply_weight_norm(m):
if isinstance(m, nn.Conv1d):
torch.nn.utils.weight_norm(m)
self.apply(_apply_weight_norm)
def reset_parameters(self):
self.apply(init_weights)
class Transpose(nn.Module):
def __init__(self, dim1, dim2):
super(Transpose, self).__init__()
self.dim1 = dim1
self.dim2 = dim2
def forward(self, x):
return x.transpose(self.dim1, self.dim2)
class CodecEncoder_Transformer(nn.Module):
def __init__(self,
ngf=48,
up_ratios=[2, 2, 4, 4, 5],
dilations=(1, 3, 9),
hidden_dim=1024,
depth=12,
heads=12,
pos_meb_dim=64,
):
super().__init__()
self.hop_length = np.prod(up_ratios)
self.ngf =ngf
self.up_ratios = up_ratios
d_model = ngf
self.conv_blocks = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
for i, stride in enumerate(up_ratios):
d_model *= 2
self.conv_blocks += [EncoderBlock(d_model, stride=stride, dilations=dilations)]
self.conv_blocks = nn.Sequential(*self.conv_blocks)
# time_rotary_embed = RotaryPositionalEmbeddings(dim=pos_meb_dim)
# transformer_blocks = [
# TransformerBlock(dim=hidden_dim, n_heads=heads, rotary_embed=time_rotary_embed)
# for _ in range(depth)
# ]
# self.transformers = nn.Sequential(*transformer_blocks)
# self.final_layer_norm = nn.LayerNorm(hidden_dim, eps=1e-6)
self.conv_final_block = [
Activation1d(activation=activations.SnakeBeta(d_model, alpha_logscale=True)),
WNConv1d(d_model, hidden_dim, kernel_size=3, padding=1),
]
self.conv_final_block = nn.Sequential(*self.conv_final_block)
self.reset_parameters()
def forward(self, x):
x = self.conv_blocks(x)
# x = x.permute(0, 2, 1)
# x= self.transformers(x)
# x = self.final_layer_norm(x)
# x = x.permute(0, 2, 1)
x = self.conv_final_block (x)
x = x.permute(0, 2, 1)
return x
def inference(self, x):
return self.block(x)
def remove_weight_norm(self):
"""Remove weight normalization module from all of the layers."""
def _remove_weight_norm(m):
try:
torch.nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(_remove_weight_norm)
def apply_weight_norm(self):
"""Apply weight normalization module from all of the layers."""
def _apply_weight_norm(m):
if isinstance(m, nn.Conv1d):
torch.nn.utils.weight_norm(m)
self.apply(_apply_weight_norm)
def reset_parameters(self):
self.apply(init_weights)
class Codec_oobleck_Transformer(nn.Module):
def __init__(self,
ngf=32,
up_ratios=(2, 2,4,4, 5),
dilations=(1, 3, 9),
hidden_dim=1024,
depth=12,
heads=16,
pos_meb_dim=64,
):
super().__init__()
self.hop_length = np.prod(up_ratios)
self.ngf =ngf
self.up_ratios = up_ratios
self.hidden_dim = hidden_dim
self.conv_blocks = blocks.DilatedResidualEncoder(
capacity=ngf,
dilated_unit=self.dilated_unit,
downsampling_unit=self.downsampling_unit,
ratios=up_ratios,
dilations=dilations,
pre_network_conv=self.pre_conv,
post_network_conv=self.post_conv,
)
time_rotary_embed = RotaryPositionalEmbeddings(dim=pos_meb_dim)
transformer_blocks = [
TransformerBlock(dim=hidden_dim, n_heads=heads, rotary_embed=time_rotary_embed)
for _ in range(depth)
]
self.transformers = nn.Sequential(*transformer_blocks)
self.final_layer_norm = nn.LayerNorm(hidden_dim, eps=1e-6)
self.reset_parameters()
def forward(self, x):
x = self.conv_blocks(x)
x = x.permute(0, 2, 1)
x= self.transformers(x)
x = self.final_layer_norm(x)
return x
def inference(self, x):
return self.block(x)
def remove_weight_norm(self):
"""Remove weight normalization module from all of the layers."""
def _remove_weight_norm(m):
try:
torch.nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(_remove_weight_norm)
def apply_weight_norm(self):
"""Apply weight normalization module from all of the layers."""
def _apply_weight_norm(m):
if isinstance(m, nn.Conv1d):
torch.nn.utils.weight_norm(m)
self.apply(_apply_weight_norm)
def reset_parameters(self):
self.apply(init_weights)
def dilated_unit(self,hidden_dim, dilation):
return blocks.DilatedConvolutionalUnit(hidden_dim,
dilation,
kernel_size=3,
activation=nn.ReLU,
normalization=utils.weight_norm)
def downsampling_unit(self, input_dim: int, output_dim: int, stride: int):
return blocks.DownsamplingUnit(input_dim,
output_dim,
stride,
nn.ReLU,
normalization=utils.weight_norm)
def pre_conv(self,out_channels):
return nn.Conv1d(1, out_channels, 1)
def post_conv(self,in_channels):
return nn.Conv1d(in_channels, self.hidden_dim, 1)
class CodecEncoder_only_Transformer(nn.Module):
def __init__(self,hidden_dim=1024,depth=12,heads=16,pos_meb_dim=64):
super().__init__()
# self.embed = nn.Linear(input_dim, hidden_dim )input_dim=300,
depth = depth
time_rotary_embed = RotaryPositionalEmbeddings(dim=pos_meb_dim)
transformer_blocks = [
TransformerBlock(dim=hidden_dim, n_heads=heads, rotary_embed=time_rotary_embed)
for _ in range(depth)
]
self.transformers = nn.Sequential(*transformer_blocks)
self.final_layer_norm = nn.LayerNorm(hidden_dim, eps=1e-6)
def forward(self, x: torch.Tensor ) -> torch.Tensor:
# x = self.embed(x)
x= self.transformers(x)
x = self.final_layer_norm(x)
return x
def get_model_size(model):
# 计算总参数数
total_params = sum(p.numel() for p in model.parameters())
# 假设每个参数都是32位浮点数,计算模型大小(以字节为单位)
model_size_bytes = total_params # 每个参数4字节
# 转换为更易读的单位(例如,MB)
model_size_mb = model_size_bytes / (1024 ** 2)
return total_params, model_size_mb
if __name__ == '__main__':
model = Codec_oobleck_Transformer()
x = torch.randn(1, 1, 16000) # example input tensor
output = model(x)
print("Output shape:", output.shape)