|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
[Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU). |
|
It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks. |
|
Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana). |
|
|
|
## CLIP model HPU configuration |
|
|
|
This model only contains the `GaudiConfig` file for running CLIP-like models (e.g. [this one](https://huggingface.co/openai/clip-vit-large-patch14)) on Habana's Gaudi processors (HPU). |
|
|
|
**This model contains no model weights, only a GaudiConfig.** |
|
|
|
This enables to specify: |
|
- `use_fused_adam`: whether to use Habana's custom AdamW implementation |
|
- `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator |
|
- `use_torch_autocast`: whether to use Torch Autocast for managing mixed precision |
|
|
|
## Usage |
|
|
|
The model is instantiated the same way as in the Transformers library. |
|
The only difference is that there are a few new training arguments specific to HPUs.\ |
|
It is strongly recommended to train this model doing bf16 mixed-precision training for optimal performance and accuracy. |
|
|
|
[Here](https://github.com/huggingface/optimum-habana/blob/main/examples/contrastive-image-text) is an example script to fine-tune a model on COCO. |
|
Use it as follows: |
|
|
|
1. You first need to download the dataset: |
|
```bash |
|
mkdir data |
|
cd data |
|
wget http://images.cocodataset.org/zips/train2017.zip |
|
wget http://images.cocodataset.org/zips/val2017.zip |
|
wget http://images.cocodataset.org/zips/test2017.zip |
|
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip |
|
wget http://images.cocodataset.org/annotations/image_info_test2017.zip |
|
cd .. |
|
``` |
|
|
|
2. Then, you can create a model from pretrained vision and text decoder models: |
|
```python |
|
from transformers import ( |
|
VisionTextDualEncoderModel, |
|
VisionTextDualEncoderProcessor, |
|
AutoTokenizer, |
|
AutoImageProcessor |
|
) |
|
|
|
model = VisionTextDualEncoderModel.from_vision_text_pretrained( |
|
"openai/clip-vit-large-patch14", "roberta-large" |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("roberta-large") |
|
image_processor = AutoImageProcessor.from_pretrained("openai/clip-vit-large-patch14") |
|
processor = VisionTextDualEncoderProcessor(image_processor, tokenizer) |
|
|
|
# save the model and processor |
|
model.save_pretrained("clip-roberta") |
|
processor.save_pretrained("clip-roberta") |
|
``` |
|
|
|
3. Finally, you can run it with the following command: |
|
```bash |
|
python run_clip.py \ |
|
--output_dir ./clip-roberta-finetuned \ |
|
--model_name_or_path ./clip-roberta \ |
|
--data_dir $PWD/data \ |
|
--dataset_name ydshieh/coco_dataset_script \ |
|
--dataset_config_name=2017 \ |
|
--image_column image_path \ |
|
--caption_column caption \ |
|
--remove_unused_columns=False \ |
|
--do_train --do_eval \ |
|
--per_device_train_batch_size="16" \ |
|
--per_device_eval_batch_size="16" \ |
|
--learning_rate="5e-5" --warmup_steps="0" --weight_decay 0.1 \ |
|
--overwrite_output_dir \ |
|
--save_strategy epoch \ |
|
--use_habana \ |
|
--use_lazy_mode \ |
|
--use_hpu_graphs \ |
|
--gaudi_config_name Habana/clip \ |
|
--throughput_warmup_steps 2 \ |
|
--bf16 |
|
``` |
|
|
|
Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples. |
|
|