datasets:
- Hailay/TigQA
Geez Word2Vec Skipgram Model
This repository contains a Word2Vec model trained on the TIGQA dataset using a custom tokenizer with SpaCy.
Usage
You can download and use the model in your Python code as follows:
from gensim.models import Word2Vec
# URL of the model file on Hugging Face
model_url = "https://huggingface.co/Hailay/Geez_word2vec_skipgram.model/resolve/main/Geez_word2vec_skipgram.model"
# Load the trained Word2Vec model directly from the URL
model = Word2Vec.load(model_url)
# Get a vector for a word
word_vector = model.wv['α°α₯']
print(f"Vector for 'α°α₯': {word_vector}")
# Find the most similar words
similar_words = model.wv.most_similar('α°α₯')
print(f"Words similar to 'α°α₯': {similar_words}")
#Visualizing Word Vectors
You can visualize the word vectors using t-SNE:
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
import numpy as np
# Words to visualize but you can change the words from the trained vocublary
words = ['α°α₯', 'ααα', 'α°αα', 'ααα','αα', 'α£α
αͺ']
# Get the vectors for the words
word_vectors = np.array([model.wv[word] for word in words])
# Reduce dimensionality using t-SNE with a lower perplexity value
perplexity_value = min(5, len(words) - 1)
tsne = TSNE(n_components=2, perplexity=perplexity_value, random_state=0)
word_vectors_2d = tsne.fit_transform(word_vectors)
# Create a scatter plot
plt.figure(figsize=(10, 6))
plt.scatter(word_vectors_2d[:, 0], word_vectors_2d[:, 1], edgecolors='k', c='r')
# Add annotations to the points
for i, word in enumerate(words):
plt.annotate(word, xy=(word_vectors_2d[i, 0], word_vectors_2d[i, 1]), xytext=(5, 2),
textcoords='offset points', ha='right', va='bottom')
plt.title('2D Visualization of Word2Vec Embeddings')
plt.xlabel('TSNE Component 1')
plt.ylabel('TSNE Component 2')
plt.grid(True)
plt.show()
##Dataset Source
The dataset for training this model contains text data in the Geez script of the Tigrinya language.
It is a publicly available dataset as part of an NLP resource for low-resource languages for research and development.
For more information about the TIGQA dataset, visit this link. https://zenodo.org/records/11423987 and from HornMT
License
This Word2Vec model and its associated files are released under the MIT License.
- Downloads last month
- 11
Inference API (serverless) does not yet support transformers models for this pipeline type.