Edit model card

openai/whisper-base

This model is a fine-tuned version of openai/whisper-base on the pphuc25/FrenchMed dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6240
  • Wer: 47.8006

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
1.2466 1.0 215 1.2507 115.8358
0.7568 2.0 430 1.2524 86.4370
0.4229 3.0 645 1.3556 72.1408
0.2402 4.0 860 1.4000 52.4927
0.1544 5.0 1075 1.4770 47.1408
0.1127 6.0 1290 1.5115 56.7449
0.0674 7.0 1505 1.5317 56.8182
0.0526 8.0 1720 1.5979 51.1730
0.0442 9.0 1935 1.5844 50.5865
0.038 10.0 2150 1.5793 55.4252
0.0193 11.0 2365 1.6582 50.3666
0.0138 12.0 2580 1.6064 56.8182
0.0144 13.0 2795 1.5930 48.3138
0.0125 14.0 3010 1.6400 53.4457
0.0061 15.0 3225 1.6139 48.9003
0.0024 16.0 3440 1.6124 46.1877
0.0017 17.0 3655 1.6168 50.2933
0.0015 18.0 3870 1.6247 45.5279
0.0004 19.0 4085 1.6212 45.8211
0.0005 20.0 4300 1.6240 47.8006

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hanhpt23/whisper-base-Encod-frenchmed

Finetuned
(350)
this model