Edit model card

openai/whisper-base

This model is a fine-tuned version of openai/whisper-base on the Hanhpt23/GermanMed dataset. It achieves the following results on the evaluation set:

  • Loss: 5.5096
  • Wer: 105.0517

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
3.094 1.0 765 3.6319 147.1871
2.2494 2.0 1530 3.7314 101.2055
1.5508 3.0 2295 3.9256 109.4719
0.9752 4.0 3060 4.2097 106.3720
0.4449 5.0 3825 4.5738 103.4443
0.2699 6.0 4590 4.7393 113.6625
0.2048 7.0 5355 4.9283 105.8553
0.1749 8.0 6120 4.9945 110.6200
0.1707 9.0 6885 5.1057 121.0677
0.1193 10.0 7650 5.1520 116.5327
0.1266 11.0 8415 5.3014 107.0608
0.1156 12.0 9180 5.3254 104.9369
0.1282 13.0 9945 5.3345 123.4214
0.0944 14.0 10710 5.3766 129.9656
0.113 15.0 11475 5.3981 109.5293
0.0986 16.0 12240 5.4435 104.5350
0.0919 17.0 13005 5.4113 105.9701
0.0824 18.0 13770 5.4515 102.2962
0.0974 19.0 14535 5.4659 108.0367
0.0995 20.0 15300 5.5096 105.0517

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hanhpt23/whisper-base-GermanMed-v1

Finetuned
(351)
this model