|
import torch |
|
import os.path |
|
import torchvision.transforms as transforms |
|
from data.base_dataset import BaseDataset, get_transform |
|
from data.image_folder import make_dataset |
|
import random |
|
from PIL import Image |
|
import PIL |
|
from pdb import set_trace as st |
|
|
|
|
|
class UnalignedDataset(BaseDataset): |
|
def initialize(self, opt): |
|
self.opt = opt |
|
self.root = opt.dataroot |
|
self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') |
|
self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') |
|
|
|
self.A_paths = make_dataset(self.dir_A) |
|
self.B_paths = make_dataset(self.dir_B) |
|
|
|
self.A_paths = sorted(self.A_paths) |
|
self.B_paths = sorted(self.B_paths) |
|
self.A_size = len(self.A_paths) |
|
self.B_size = len(self.B_paths) |
|
|
|
transform_list = [transforms.ToTensor(), |
|
transforms.Normalize((0.5, 0.5, 0.5), |
|
(0.5, 0.5, 0.5))] |
|
|
|
self.transform = transforms.Compose(transform_list) |
|
|
|
|
|
def __getitem__(self, index): |
|
A_path = self.A_paths[index % self.A_size] |
|
B_path = self.B_paths[index % self.B_size] |
|
|
|
A_img = Image.open(A_path).convert('RGB') |
|
B_img = Image.open(B_path).convert('RGB') |
|
A_size = A_img.size |
|
B_size = B_img.size |
|
A_size = A_size = (A_size[0]//16*16, A_size[1]//16*16) |
|
B_size = B_size = (B_size[0]//16*16, B_size[1]//16*16) |
|
A_img = A_img.resize(A_size, Image.BICUBIC) |
|
B_img = B_img.resize(B_size, Image.BICUBIC) |
|
|
|
|
|
A_img = self.transform(A_img) |
|
B_img = self.transform(B_img) |
|
|
|
if self.opt.resize_or_crop == 'no': |
|
pass |
|
else: |
|
w = A_img.size(2) |
|
h = A_img.size(1) |
|
size = [8,16,22] |
|
from random import randint |
|
size_index = randint(0,2) |
|
Cropsize = size[size_index]*16 |
|
|
|
w_offset = random.randint(0, max(0, w - Cropsize - 1)) |
|
h_offset = random.randint(0, max(0, h - Cropsize - 1)) |
|
|
|
A_img = A_img[:, h_offset:h_offset + Cropsize, |
|
w_offset:w_offset + Cropsize] |
|
|
|
if (not self.opt.no_flip) and random.random() < 0.5: |
|
idx = [i for i in range(A_img.size(2) - 1, -1, -1)] |
|
idx = torch.LongTensor(idx) |
|
A_img = A_img.index_select(2, idx) |
|
B_img = B_img.index_select(2, idx) |
|
if (not self.opt.no_flip) and random.random() < 0.5: |
|
idx = [i for i in range(A_img.size(1) - 1, -1, -1)] |
|
idx = torch.LongTensor(idx) |
|
A_img = A_img.index_select(1, idx) |
|
B_img = B_img.index_select(1, idx) |
|
|
|
return {'A': A_img, 'B': B_img, |
|
'A_paths': A_path, 'B_paths': B_path} |
|
|
|
def __len__(self): |
|
return max(self.A_size, self.B_size) |
|
|
|
def name(self): |
|
return 'UnalignedDataset' |
|
|