|
import os |
|
import torch |
|
|
|
|
|
class BaseModel(): |
|
def name(self): |
|
return 'BaseModel' |
|
|
|
def initialize(self, opt): |
|
self.opt = opt |
|
self.gpu_ids = opt.gpu_ids |
|
self.isTrain = opt.isTrain |
|
self.Tensor = torch.cuda.FloatTensor if self.gpu_ids else torch.Tensor |
|
self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) |
|
|
|
def set_input(self, input): |
|
self.input = input |
|
|
|
def forward(self): |
|
pass |
|
|
|
|
|
def test(self): |
|
pass |
|
|
|
def get_image_paths(self): |
|
pass |
|
|
|
def optimize_parameters(self): |
|
pass |
|
|
|
def get_current_visuals(self): |
|
return self.input |
|
|
|
def get_current_errors(self): |
|
return {} |
|
|
|
def save(self, label): |
|
pass |
|
|
|
|
|
def save_network(self, network, network_label, epoch_label, gpu_ids): |
|
save_filename = '%s_net_%s.pth' % (epoch_label, network_label) |
|
save_path = os.path.join(self.save_dir, save_filename) |
|
torch.save(network.cpu().state_dict(), save_path) |
|
if len(gpu_ids) and torch.cuda.is_available(): |
|
network.cuda(device=gpu_ids[0]) |
|
|
|
|
|
def load_network(self, network, network_label, epoch_label): |
|
save_filename = '%s_net_%s.pth' % (epoch_label, network_label) |
|
save_path = os.path.join(self.save_dir, save_filename) |
|
network.load_state_dict(torch.load(save_path)) |
|
|
|
def update_learning_rate(): |
|
pass |
|
|