|
import numpy as np |
|
import torch |
|
from torch import nn |
|
import os |
|
from collections import OrderedDict |
|
from torch.autograd import Variable |
|
import util.util as util |
|
from collections import OrderedDict |
|
from torch.autograd import Variable |
|
import itertools |
|
import util.util as util |
|
from util.image_pool import ImagePool |
|
from .base_model import BaseModel |
|
import random |
|
from . import networks |
|
import sys |
|
|
|
|
|
class TempModel(BaseModel): |
|
def name(self): |
|
return 'TempModel' |
|
|
|
def initialize(self, opt): |
|
BaseModel.initialize(self, opt) |
|
|
|
nb = opt.batchSize |
|
size = opt.fineSize |
|
self.opt = opt |
|
self.input_A = self.Tensor(nb, opt.input_nc, size, size) |
|
self.input_B = self.Tensor(nb, opt.output_nc, size, size) |
|
self.input_img = self.Tensor(nb, opt.input_nc, size, size) |
|
self.input_A_gray = self.Tensor(nb, 1, size, size) |
|
|
|
if opt.vgg > 0: |
|
self.vgg_loss = networks.PerceptualLoss(opt) |
|
|
|
|
|
|
|
self.vgg_loss.cuda() |
|
self.vgg = networks.load_vgg16("./model", self.gpu_ids) |
|
self.vgg.eval() |
|
for param in self.vgg.parameters(): |
|
param.requires_grad = False |
|
elif opt.fcn > 0: |
|
self.fcn_loss = networks.SemanticLoss(opt) |
|
self.fcn_loss.cuda() |
|
self.fcn = networks.load_fcn("./model") |
|
self.fcn.eval() |
|
for param in self.fcn.parameters(): |
|
param.requires_grad = False |
|
|
|
|
|
|
|
|
|
skip = True if opt.skip > 0 else False |
|
self.netG_A = networks.define_G(opt.input_nc, opt.output_nc, |
|
opt.ngf, opt.which_model_netG, opt.norm, not opt.no_dropout, self.gpu_ids, skip=skip, opt=opt) |
|
|
|
|
|
|
|
if self.isTrain: |
|
use_sigmoid = opt.no_lsgan |
|
self.netD_A = networks.define_D(opt.output_nc, opt.ndf, |
|
opt.which_model_netD, |
|
opt.n_layers_D, opt.norm, use_sigmoid, self.gpu_ids, False) |
|
if self.opt.patchD: |
|
self.netD_P = networks.define_D(opt.input_nc, opt.ndf, |
|
opt.which_model_netD, |
|
opt.n_layers_patchD, opt.norm, use_sigmoid, self.gpu_ids, True) |
|
if not self.isTrain or opt.continue_train: |
|
which_epoch = opt.which_epoch |
|
self.load_network(self.netG_A, 'G_A', which_epoch) |
|
|
|
if self.isTrain: |
|
self.load_network(self.netD_A, 'D_A', which_epoch) |
|
if self.opt.patchD: |
|
self.load_network(self.netD_P, 'D_P', which_epoch) |
|
|
|
if self.isTrain: |
|
self.old_lr = opt.lr |
|
|
|
self.fake_B_pool = ImagePool(opt.pool_size) |
|
|
|
if opt.use_wgan: |
|
self.criterionGAN = networks.DiscLossWGANGP() |
|
else: |
|
self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor) |
|
if opt.use_mse: |
|
self.criterionCycle = torch.nn.MSELoss() |
|
else: |
|
self.criterionCycle = torch.nn.L1Loss() |
|
self.criterionL1 = torch.nn.L1Loss() |
|
self.criterionIdt = torch.nn.L1Loss() |
|
|
|
self.optimizer_G = torch.optim.Adam(self.netG_A.parameters(), |
|
lr=opt.lr, betas=(opt.beta1, 0.999)) |
|
self.optimizer_D_A = torch.optim.Adam(self.netD_A.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) |
|
|
|
|
|
|
|
print('---------- Networks initialized -------------') |
|
networks.print_network(self.netG_A) |
|
|
|
if self.isTrain: |
|
networks.print_network(self.netD_A) |
|
|
|
|
|
|
|
if opt.isTrain: |
|
self.netG_A.train() |
|
|
|
else: |
|
self.netG_A.eval() |
|
|
|
print('-----------------------------------------------') |
|
|
|
def set_input(self, input): |
|
AtoB = self.opt.which_direction == 'AtoB' |
|
input_A = input['A' if AtoB else 'B'] |
|
input_B = input['B' if AtoB else 'A'] |
|
input_img = input['input_img'] |
|
input_A_gray = input['A_gray'] |
|
self.input_A.resize_(input_A.size()).copy_(input_A) |
|
self.input_A_gray.resize_(input_A_gray.size()).copy_(input_A_gray) |
|
self.input_B.resize_(input_B.size()).copy_(input_B) |
|
self.input_img.resize_(input_img.size()).copy_(input_img) |
|
self.image_paths = input['A_paths' if AtoB else 'B_paths'] |
|
|
|
|
|
|
|
|
|
def test(self): |
|
self.real_A = Variable(self.input_A, volatile=True) |
|
self.real_A_gray = Variable(self.input_A_gray, volatile=True) |
|
if self.opt.noise > 0: |
|
self.noise = Variable(torch.cuda.FloatTensor(self.real_A.size()).normal_(mean=0, std=self.opt.noise/255.)) |
|
self.real_A = self.real_A + self.noise |
|
if self.opt.input_linear: |
|
self.real_A = (self.real_A - torch.min(self.real_A))/(torch.max(self.real_A) - torch.min(self.real_A)) |
|
|
|
if self.opt.skip == 1: |
|
self.fake_B, self.latent_real_A = self.netG_A.forward(self.real_A, self.real_A_gray) |
|
else: |
|
self.fake_B = self.netG_A.forward(self.real_A, self.real_A_gray) |
|
|
|
|
|
self.real_B = Variable(self.input_B, volatile=True) |
|
|
|
|
|
def predict(self): |
|
self.real_A = Variable(self.input_A, volatile=True) |
|
self.real_A_gray = Variable(self.input_A_gray, volatile=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.opt.skip == 1: |
|
self.fake_B, self.latent_real_A = self.netG_A.forward(self.real_A, self.real_A_gray) |
|
else: |
|
self.fake_B = self.netG_A.forward(self.real_A, self.real_A_gray) |
|
|
|
|
|
real_A = util.tensor2im(self.real_A.data) |
|
fake_B = util.tensor2im(self.fake_B.data) |
|
A_gray = util.atten2im(self.real_A_gray.data) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return OrderedDict([('real_A', real_A), ('fake_B', fake_B)]) |
|
|
|
|
|
def get_image_paths(self): |
|
return self.image_paths |
|
|
|
def backward_D_basic(self, netD, real, fake, use_ragan): |
|
|
|
pred_real = netD.forward(real) |
|
pred_fake = netD.forward(fake.detach()) |
|
if self.opt.use_wgan: |
|
loss_D_real = pred_real.mean() |
|
loss_D_fake = pred_fake.mean() |
|
loss_D = loss_D_fake - loss_D_real + self.criterionGAN.calc_gradient_penalty(netD, |
|
real.data, fake.data) |
|
elif self.opt.use_ragan and use_ragan: |
|
loss_D = (self.criterionGAN(pred_real - torch.mean(pred_fake), True) + |
|
self.criterionGAN(pred_fake - torch.mean(pred_real), False)) / 2 |
|
else: |
|
loss_D_real = self.criterionGAN(pred_real, True) |
|
loss_D_fake = self.criterionGAN(pred_fake, False) |
|
loss_D = (loss_D_real + loss_D_fake) * 0.5 |
|
|
|
return loss_D |
|
|
|
def backward_D_A(self): |
|
fake_B = self.fake_B_pool.query(self.fake_B) |
|
fake_B = self.fake_B |
|
self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B, True) |
|
self.loss_D_A.backward() |
|
|
|
def backward_D_P(self): |
|
if self.opt.hybrid_loss: |
|
loss_D_P = self.backward_D_basic(self.netD_P, self.real_patch, self.fake_patch, False) |
|
if self.opt.patchD_3 > 0: |
|
for i in range(self.opt.patchD_3): |
|
loss_D_P += self.backward_D_basic(self.netD_P, self.real_patch_1[i], self.fake_patch_1[i], False) |
|
self.loss_D_P = loss_D_P/float(self.opt.patchD_3 + 1) |
|
else: |
|
self.loss_D_P = loss_D_P |
|
else: |
|
loss_D_P = self.backward_D_basic(self.netD_P, self.real_patch, self.fake_patch, True) |
|
if self.opt.patchD_3 > 0: |
|
for i in range(self.opt.patchD_3): |
|
loss_D_P += self.backward_D_basic(self.netD_P, self.real_patch_1[i], self.fake_patch_1[i], True) |
|
self.loss_D_P = loss_D_P/float(self.opt.patchD_3 + 1) |
|
else: |
|
self.loss_D_P = loss_D_P |
|
if self.opt.D_P_times2: |
|
self.loss_D_P = self.loss_D_P*2 |
|
self.loss_D_P.backward() |
|
|
|
|
|
|
|
|
|
def forward(self): |
|
self.real_A = Variable(self.input_A) |
|
self.real_B = Variable(self.input_B) |
|
self.real_A_gray = Variable(self.input_A_gray) |
|
self.real_img = Variable(self.input_img) |
|
if self.opt.noise > 0: |
|
self.noise = Variable(torch.cuda.FloatTensor(self.real_A.size()).normal_(mean=0, std=self.opt.noise/255.)) |
|
self.real_A = self.real_A + self.noise |
|
if self.opt.input_linear: |
|
self.real_A = (self.real_A - torch.min(self.real_A))/(torch.max(self.real_A) - torch.min(self.real_A)) |
|
if self.opt.skip == 1: |
|
self.fake_B, self.latent_real_A = self.netG_A.forward(self.real_img, self.real_A_gray) |
|
else: |
|
self.fake_B = self.netG_A.forward(self.real_img, self.real_A_gray) |
|
if self.opt.patchD: |
|
w = self.real_A.size(3) |
|
h = self.real_A.size(2) |
|
w_offset = random.randint(0, max(0, w - self.opt.patchSize - 1)) |
|
h_offset = random.randint(0, max(0, h - self.opt.patchSize - 1)) |
|
|
|
self.fake_patch = self.fake_B[:,:, h_offset:h_offset + self.opt.patchSize, |
|
w_offset:w_offset + self.opt.patchSize] |
|
self.real_patch = self.real_B[:,:, h_offset:h_offset + self.opt.patchSize, |
|
w_offset:w_offset + self.opt.patchSize] |
|
self.input_patch = self.real_A[:,:, h_offset:h_offset + self.opt.patchSize, |
|
w_offset:w_offset + self.opt.patchSize] |
|
if self.opt.patchD_3 > 0: |
|
self.fake_patch_1 = [] |
|
self.real_patch_1 = [] |
|
self.input_patch_1 = [] |
|
w = self.real_A.size(3) |
|
h = self.real_A.size(2) |
|
for i in range(self.opt.patchD_3): |
|
w_offset_1 = random.randint(0, max(0, w - self.opt.patchSize - 1)) |
|
h_offset_1 = random.randint(0, max(0, h - self.opt.patchSize - 1)) |
|
self.fake_patch_1.append(self.fake_B[:,:, h_offset_1:h_offset_1 + self.opt.patchSize, |
|
w_offset_1:w_offset_1 + self.opt.patchSize]) |
|
self.real_patch_1.append(self.real_B[:,:, h_offset_1:h_offset_1 + self.opt.patchSize, |
|
w_offset_1:w_offset_1 + self.opt.patchSize]) |
|
self.input_patch_1.append(self.real_A[:,:, h_offset_1:h_offset_1 + self.opt.patchSize, |
|
w_offset_1:w_offset_1 + self.opt.patchSize]) |
|
|
|
w_offset_2 = random.randint(0, max(0, w - self.opt.patchSize - 1)) |
|
h_offset_2 = random.randint(0, max(0, h - self.opt.patchSize - 1)) |
|
self.fake_patch_2 = self.fake_B[:,:, h_offset_2:h_offset_2 + self.opt.patchSize, |
|
w_offset_2:w_offset_2 + self.opt.patchSize] |
|
self.real_patch_2 = self.real_B[:,:, h_offset_2:h_offset_2 + self.opt.patchSize, |
|
w_offset_2:w_offset_2 + self.opt.patchSize] |
|
self.input_patch_2 = self.real_A[:,:, h_offset_2:h_offset_2 + self.opt.patchSize, |
|
w_offset_2:w_offset_2 + self.opt.patchSize] |
|
|
|
def backward_G(self, epoch): |
|
pred_fake = self.netD_A.forward(self.fake_B) |
|
if self.opt.use_wgan: |
|
self.loss_G_A = -pred_fake.mean() |
|
elif self.opt.use_ragan: |
|
pred_real = self.netD_A.forward(self.real_B) |
|
|
|
self.loss_G_A = (self.criterionGAN(pred_real - torch.mean(pred_fake), False) + |
|
self.criterionGAN(pred_fake - torch.mean(pred_real), True)) / 2 |
|
|
|
else: |
|
self.loss_G_A = self.criterionGAN(pred_fake, True) |
|
|
|
loss_G_A = 0 |
|
if self.opt.patchD: |
|
pred_fake_patch = self.netD_P.forward(self.fake_patch) |
|
if self.opt.hybrid_loss: |
|
loss_G_A += self.criterionGAN(pred_fake_patch, True) |
|
else: |
|
pred_real_patch = self.netD_P.forward(self.real_patch) |
|
|
|
loss_G_A += (self.criterionGAN(pred_real_patch - torch.mean(pred_fake_patch), False) + |
|
self.criterionGAN(pred_fake_patch - torch.mean(pred_real_patch), True)) / 2 |
|
self.loss_G_A += loss_G_A |
|
if self.opt.patchD_3 > 0: |
|
for i in range(self.opt.patchD_3): |
|
pred_fake_patch_1 = self.netD_P.forward(self.fake_patch_1[i]) |
|
if self.opt.hybrid_loss: |
|
loss_G_A += self.criterionGAN(pred_fake_patch_1, True) |
|
else: |
|
pred_real_patch_1 = self.netD_P.forward(self.real_patch_1[i]) |
|
|
|
loss_G_A += (self.criterionGAN(pred_real_patch_1 - torch.mean(pred_fake_patch_1), False) + |
|
self.criterionGAN(pred_fake_patch_1 - torch.mean(pred_real_patch_1), True)) / 2 |
|
|
|
if not self.opt.D_P_times2: |
|
self.loss_G_A += loss_G_A/float(self.opt.patchD_3 + 1) |
|
else: |
|
self.loss_G_A += loss_G_A/float(self.opt.patchD_3 + 1)*2 |
|
else: |
|
if not self.opt.D_P_times2: |
|
self.loss_G_A += loss_G_A |
|
else: |
|
self.loss_G_A += loss_G_A*2 |
|
|
|
if epoch < 0: |
|
vgg_w = 0 |
|
else: |
|
vgg_w = 1 |
|
if self.opt.vgg > 0: |
|
self.loss_vgg_b = self.vgg_loss.compute_vgg_loss(self.vgg, |
|
self.fake_B, self.real_A) * self.opt.vgg if self.opt.vgg > 0 else 0 |
|
if self.opt.patch_vgg: |
|
if not self.opt.IN_vgg: |
|
loss_vgg_patch = self.vgg_loss.compute_vgg_loss(self.vgg, |
|
self.fake_patch, self.input_patch) * self.opt.vgg |
|
else: |
|
loss_vgg_patch = self.vgg_patch_loss.compute_vgg_loss(self.vgg, |
|
self.fake_patch, self.input_patch) * self.opt.vgg |
|
if self.opt.patchD_3 > 0: |
|
for i in range(self.opt.patchD_3): |
|
if not self.opt.IN_vgg: |
|
loss_vgg_patch += self.vgg_loss.compute_vgg_loss(self.vgg, |
|
self.fake_patch_1[i], self.input_patch_1[i]) * self.opt.vgg |
|
else: |
|
loss_vgg_patch += self.vgg_patch_loss.compute_vgg_loss(self.vgg, |
|
self.fake_patch_1[i], self.input_patch_1[i]) * self.opt.vgg |
|
self.loss_vgg_b += loss_vgg_patch/float(self.opt.patchD_3 + 1) |
|
else: |
|
self.loss_vgg_b += loss_vgg_patch |
|
self.loss_G = self.loss_G_A + self.loss_vgg_b*vgg_w |
|
elif self.opt.fcn > 0: |
|
self.loss_fcn_b = self.fcn_loss.compute_fcn_loss(self.fcn, |
|
self.fake_B, self.real_A) * self.opt.fcn if self.opt.fcn > 0 else 0 |
|
if self.opt.patchD: |
|
loss_fcn_patch = self.fcn_loss.compute_vgg_loss(self.fcn, |
|
self.fake_patch, self.input_patch) * self.opt.fcn |
|
if self.opt.patchD_3 > 0: |
|
for i in range(self.opt.patchD_3): |
|
loss_fcn_patch += self.fcn_loss.compute_vgg_loss(self.fcn, |
|
self.fake_patch_1[i], self.input_patch_1[i]) * self.opt.fcn |
|
self.loss_fcn_b += loss_fcn_patch/float(self.opt.patchD_3 + 1) |
|
else: |
|
self.loss_fcn_b += loss_fcn_patch |
|
self.loss_G = self.loss_G_A + self.loss_fcn_b*vgg_w |
|
|
|
self.loss_G.backward() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def optimize_parameters(self, epoch): |
|
|
|
self.forward() |
|
|
|
self.optimizer_G.zero_grad() |
|
self.backward_G(epoch) |
|
self.optimizer_G.step() |
|
|
|
self.optimizer_D_A.zero_grad() |
|
self.backward_D_A() |
|
if not self.opt.patchD: |
|
self.optimizer_D_A.step() |
|
else: |
|
|
|
self.optimizer_D_P.zero_grad() |
|
self.backward_D_P() |
|
self.optimizer_D_A.step() |
|
self.optimizer_D_P.step() |
|
|
|
|
|
def get_current_errors(self, epoch): |
|
D_A = self.loss_D_A.data[0] |
|
D_P = self.loss_D_P.data[0] if self.opt.patchD else 0 |
|
G_A = self.loss_G_A.data[0] |
|
if self.opt.vgg > 0: |
|
vgg = self.loss_vgg_b.data[0]/self.opt.vgg if self.opt.vgg > 0 else 0 |
|
return OrderedDict([('D_A', D_A), ('G_A', G_A), ("vgg", vgg)]) |
|
elif self.opt.fcn > 0: |
|
fcn = self.loss_fcn_b.data[0]/self.opt.fcn if self.opt.fcn > 0 else 0 |
|
return OrderedDict([('D_A', D_A), ('G_A', G_A), ("fcn", fcn)]) |
|
|
|
|
|
def get_current_visuals(self): |
|
real_A = util.tensor2im(self.real_A.data) |
|
fake_B = util.tensor2im(self.fake_B.data) |
|
real_B = util.tensor2im(self.real_B.data) |
|
if self.opt.skip > 0: |
|
latent_real_A = util.tensor2im(self.latent_real_A.data) |
|
latent_show = util.latent2im(self.latent_real_A.data) |
|
return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A), |
|
('latent_show', latent_show), ('real_B', real_B)]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def save(self, label): |
|
self.save_network(self.netG_A, 'G_A', label, self.gpu_ids) |
|
self.save_network(self.netD_A, 'D_A', label, self.gpu_ids) |
|
if self.opt.patchD: |
|
self.save_network(self.netD_P, 'D_P', label, self.gpu_ids) |
|
|
|
|
|
|
|
def update_learning_rate(self): |
|
|
|
if self.opt.new_lr: |
|
lr = self.old_lr/2 |
|
else: |
|
lrd = self.opt.lr / self.opt.niter_decay |
|
lr = self.old_lr - lrd |
|
for param_group in self.optimizer_D_A.param_groups: |
|
param_group['lr'] = lr |
|
if self.opt.patchD: |
|
for param_group in self.optimizer_D_P.param_groups: |
|
param_group['lr'] = lr |
|
for param_group in self.optimizer_G.param_groups: |
|
param_group['lr'] = lr |
|
|
|
print('update learning rate: %f -> %f' % (self.old_lr, lr)) |
|
self.old_lr = lr |
|
|