File size: 21,761 Bytes
f50d6f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:10K<n<100K
- loss:CoSENTLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Driving or commuting to work feels draining, even if it's a short
    distance.
  sentences:
  - Symptoms during a manic episode include decreased need for sleep, more talkative
    than usual, flight of ideas, distractibility
  - I feel like I have lost a part of myself since the traumatic event, and I struggle
    to connect with others on a deeper level.
  - Diagnosis requires at least one hypomanic episode and one major depressive episode.
- source_sentence: I felt like my thoughts were disconnected and chaotic during a
    manic episode.
  sentences:
  - Diagnosis requires one or more manic episodes, which may be preceded or followed
    by hypomanic or major depressive episodes.
  - I feel like I have lost a part of myself since the traumatic event, and I struggle
    to connect with others on a deeper level.
  - Depressed mood for most of the day, for more days than not, as indicated by subjective
    account or observation, for at least 2 years.
- source_sentence: My insomnia has caused me to experience frequent headaches and
    muscle soreness.
  sentences:
  - Insomnia or hypersomnia nearly every day.
  - I have difficulty standing in long lines at the grocery store or the bank due
    to the fear of feeling trapped or overwhelmed.
  - Diagnosis requires at least one hypomanic episode and one major depressive episode.
- source_sentence: The phobic object or situation almost always provokes immediate
    fear or anxiety.
  sentences:
  - The agoraphobic situations almost always provoke fear or anxiety.
  - I have difficulty standing in long lines at the grocery store or the bank due
    to the fear of feeling trapped or overwhelmed.
  - Exclusion of schizoaffective disorder and depressive or bipolar disorder with
    psychotic features, based on the absence of concurrent depressive or manic episodes
    during the active-phase symptoms, or these mood episodes being present for a minority
    of the total duration of the active and residual phases.
- source_sentence: I engage in risky behaviors like reckless driving or reckless sexual
    encounters.
  sentences:
  - Symptoms during a manic episode include inflated self-esteem or grandiosity,increased
    goal-directed activity, or excessive involvement in risky activities.
  - Marked decrease in functioning in areas like work, interpersonal relations, or
    self-care since the onset of the disturbance.
  - During the specified period, symptoms from Criterion A are present at least half
    the time with no symptom-free interval lasting longer than 2 months.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: FT label
      type: FT_label
    metrics:
    - type: pearson_cosine
      value: 0.4627701543833943
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.4076356119364853
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.48164714740150605
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.406731043246377
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.4840582172096936
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.407636256115058
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.46277015122653486
      name: Pearson Dot
    - type: spearman_dot
      value: 0.4076359510487126
      name: Spearman Dot
    - type: pearson_max
      value: 0.4840582172096936
      name: Pearson Max
    - type: spearman_max
      value: 0.407636256115058
      name: Spearman Max
---

# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision e4ce9877abf3edfe10b0d82785e83bdcb973e22e -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Hgkang00/FT-label-consent-20")
# Run inference
sentences = [
    'I engage in risky behaviors like reckless driving or reckless sexual encounters.',
    'Symptoms during a manic episode include inflated self-esteem or grandiosity,increased goal-directed activity, or excessive involvement in risky activities.',
    'Marked decrease in functioning in areas like work, interpersonal relations, or self-care since the onset of the disturbance.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `FT_label`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.4628     |
| **spearman_cosine** | **0.4076** |
| pearson_manhattan   | 0.4816     |
| spearman_manhattan  | 0.4067     |
| pearson_euclidean   | 0.4841     |
| spearman_euclidean  | 0.4076     |
| pearson_dot         | 0.4628     |
| spearman_dot        | 0.4076     |
| pearson_max         | 0.4841     |
| spearman_max        | 0.4076     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 33,800 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          | score                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                            |
  | details | <ul><li>min: 11 tokens</li><li>mean: 31.63 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 25.22 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: -1.0</li><li>mean: -0.87</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                            | sentence2                                                                                                                                                                                      | score             |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
  | <code>Presence of one or more of the following intrusion symptoms associated with the traumatic event: recurrent distressing memories, dreams, flashbacks, psychological distress, or physiological reactions to cues of the traumatic event.</code> | <code>I avoid making phone calls, even to close friends or family, because I'm afraid of saying something wrong or sounding awkward.</code>                                                    | <code>0.0</code>  |
  | <code>The phobic object or situation almost always provokes immediate fear or anxiety.</code>                                                                                                                                                        | <code>I find it hard to stick to a consistent eating schedule, sometimes going days without feeling the need to eat at all.</code>                                                             | <code>-1.0</code> |
  | <code>The fear or anxiety is out of proportion to the actual danger posed by the specific object or situation and to the sociocultural context.</code>                                                                                               | <code>I have difficulty going to places where I feel there are no immediate exits, such as cinemas or auditoriums, as the fear of being stuck or unable to escape escalates my anxiety.</code> | <code>-1.0</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 4,225 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          | score                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                            |
  | details | <ul><li>min: 11 tokens</li><li>mean: 31.24 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 24.86 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: -1.0</li><li>mean: -0.87</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                | sentence2                                                                                                                            | score             |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------|:------------------|
  | <code>Excessive anxiety and worry occurring more days than not for at least 6 months, about a number of events or activities such as work or school performance.</code>                  | <code>Simple activities like going for a walk or doing household chores feel like daunting tasks due to my low energy levels.</code> | <code>-1.0</code> |
  | <code>The individual fears acting in a way or showing anxiety symptoms that will be negatively evaluated, leading to humiliation, embarrassment, rejection, or offense to others.</code> | <code>I often find myself mindlessly snacking throughout the day due to changes in my appetite.</code>                               | <code>-1.0</code> |
  | <code>Persistent avoidance of stimuli associated with the trauma, evidenced by avoiding distressing memories, thoughts, or feelings, or external reminders of the event.</code>          | <code>Simple activities like going for a walk or doing household chores feel like daunting tasks due to my low energy levels.</code> | <code>-1.0</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 20
- `warmup_ratio`: 0.1

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 20
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch | Step | Training Loss | loss    | FT_label_spearman_cosine |
|:-----:|:----:|:-------------:|:-------:|:------------------------:|
| 1.0   | 265  | -             | 6.9529  | 0.3450                   |
| 2.0   | 530  | 7.5663        | 7.1002  | 0.4103                   |
| 3.0   | 795  | -             | 7.4786  | 0.4155                   |
| 4.0   | 1060 | 5.5492        | 8.6710  | 0.4115                   |
| 5.0   | 1325 | -             | 10.3786 | 0.4056                   |
| 6.0   | 1590 | 4.3991        | 10.4239 | 0.3987                   |
| 7.0   | 1855 | -             | 11.8681 | 0.4238                   |
| 8.0   | 2120 | 3.5916        | 13.0752 | 0.4030                   |
| 9.0   | 2385 | -             | 12.8567 | 0.4240                   |
| 10.0  | 2650 | 3.1139        | 12.4373 | 0.4270                   |
| 11.0  | 2915 | -             | 13.6725 | 0.4212                   |
| 12.0  | 3180 | 2.6658        | 15.0521 | 0.4134                   |
| 13.0  | 3445 | -             | 15.4305 | 0.4114                   |
| 14.0  | 3710 | 2.2024        | 15.5511 | 0.4060                   |
| 15.0  | 3975 | -             | 14.9427 | 0.4165                   |
| 16.0  | 4240 | 1.8955        | 14.8399 | 0.4162                   |
| 17.0  | 4505 | -             | 15.0070 | 0.4170                   |
| 18.0  | 4770 | 1.712         | 15.4417 | 0.4105                   |
| 19.0  | 5035 | -             | 15.6241 | 0.4086                   |
| 20.0  | 5300 | 1.5088        | 15.6818 | 0.4076                   |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->