|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wcep-10 |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: wcep-10 |
|
type: wcep-10 |
|
config: roberta |
|
split: validation |
|
args: roberta |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 22.6862 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wcep-10 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.1575 |
|
- Rouge1: 22.6862 |
|
- Rouge2: 7.7268 |
|
- Rougel: 19.1961 |
|
- Rougelsum: 19.3808 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 6.5905 | 1.0 | 1020 | 3.4711 | 21.2268 | 7.4345 | 18.5023 | 18.6264 | |
|
| 4.1604 | 2.0 | 2040 | 3.3228 | 21.6354 | 7.3939 | 18.4926 | 18.6047 | |
|
| 3.914 | 3.0 | 3060 | 3.2606 | 21.9787 | 7.5818 | 18.6971 | 18.8603 | |
|
| 3.7698 | 4.0 | 4080 | 3.2058 | 21.8859 | 7.5625 | 18.6413 | 18.8169 | |
|
| 3.679 | 5.0 | 5100 | 3.1824 | 22.6515 | 7.7467 | 19.1196 | 19.3121 | |
|
| 3.6131 | 6.0 | 6120 | 3.1678 | 22.0223 | 7.6153 | 18.7956 | 18.9968 | |
|
| 3.5722 | 7.0 | 7140 | 3.1631 | 22.679 | 7.7952 | 19.1784 | 19.384 | |
|
| 3.5432 | 8.0 | 8160 | 3.1575 | 22.6862 | 7.7268 | 19.1961 | 19.3808 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|