|
--- |
|
base_model: cardiffnlp/twitter-xlm-roberta-base-sentiment |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: fineTuningXLMRoberta-TokenClassification-latest |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fineTuningXLMRoberta-TokenClassification-latest |
|
|
|
This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8366 |
|
- Precision: 0.1689 |
|
- Recall: 0.1683 |
|
- F1: 0.1686 |
|
- Accuracy: 0.6766 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 33 | 0.7181 | 0.1472 | 0.1219 | 0.1333 | 0.6725 | |
|
| No log | 2.0 | 66 | 0.7405 | 0.1414 | 0.1644 | 0.1521 | 0.6716 | |
|
| No log | 3.0 | 99 | 0.6809 | 0.1694 | 0.1393 | 0.1529 | 0.6976 | |
|
| No log | 4.0 | 132 | 0.7435 | 0.1216 | 0.1393 | 0.1298 | 0.6450 | |
|
| No log | 5.0 | 165 | 0.7392 | 0.1709 | 0.1431 | 0.1558 | 0.6904 | |
|
| No log | 6.0 | 198 | 0.7356 | 0.1768 | 0.1741 | 0.1754 | 0.6880 | |
|
| No log | 7.0 | 231 | 0.7665 | 0.1699 | 0.1683 | 0.1691 | 0.6841 | |
|
| No log | 8.0 | 264 | 0.7958 | 0.1540 | 0.1683 | 0.1608 | 0.6537 | |
|
| No log | 9.0 | 297 | 0.8161 | 0.1607 | 0.1567 | 0.1587 | 0.6742 | |
|
| No log | 10.0 | 330 | 0.8132 | 0.1776 | 0.1721 | 0.1749 | 0.6778 | |
|
| No log | 11.0 | 363 | 0.8387 | 0.1617 | 0.1663 | 0.1640 | 0.6672 | |
|
| No log | 12.0 | 396 | 0.8290 | 0.1770 | 0.1760 | 0.1765 | 0.6795 | |
|
| No log | 13.0 | 429 | 0.8456 | 0.1770 | 0.1760 | 0.1765 | 0.6750 | |
|
| No log | 14.0 | 462 | 0.8377 | 0.1692 | 0.1702 | 0.1697 | 0.6762 | |
|
| No log | 15.0 | 495 | 0.8366 | 0.1689 | 0.1683 | 0.1686 | 0.6766 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|