metadata
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama3
- trl
- hinglish
base_model: unsloth/llama-3-8b
datasets:
- cmu_hinglish_dog
Inference:
!pip install -q "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install -q --no-deps "xformers<0.0.26" trl peft accelerate bitsandbytes
from unsloth import FastLanguageModel
import torch
max_seq_length = 512
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "Hinglish-Project/llama-3-8b-English-to-Hinglish",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
def pipe(prompt):
alpaca_prompt = """### Instrucion: Translate given text to Hinglish Text:
### Input:
{}
### Response:
"""
inputs = tokenizer(
[
alpaca_prompt.format(prompt),
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 2048, use_cache = True)
raw_text = tokenizer.batch_decode(outputs)[0]
return raw_text.split("### Response:\n")[1].split("<|end_of_text|>")[0]
text = "This is a fine-tuned Hinglish translation model using Llama 3."
pipe(text)
## yeh ek fine-tuned Hinglish translation model hai jisme Llama 3 ka use kiya gaya hai.
Uploaded model
- Developed by: Hinglish-Project
- License: apache-2.0
- Finetuned from model : unsloth/llama-8b-bnb-4bit
This Llama3 model was trained 2x faster with Unsloth and Huggingface's TRL library.