Edit model card

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9786
  • Accuracy: {'accuracy': 0.878}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.4003 {'accuracy': 0.87}
0.4049 2.0 500 0.4975 {'accuracy': 0.877}
0.4049 3.0 750 0.6126 {'accuracy': 0.88}
0.1793 4.0 1000 0.6702 {'accuracy': 0.873}
0.1793 5.0 1250 0.7384 {'accuracy': 0.886}
0.0452 6.0 1500 0.9276 {'accuracy': 0.884}
0.0452 7.0 1750 0.9836 {'accuracy': 0.875}
0.0109 8.0 2000 0.9703 {'accuracy': 0.88}
0.0109 9.0 2250 0.9742 {'accuracy': 0.876}
0.0025 10.0 2500 0.9786 {'accuracy': 0.878}

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Safetensors
Model size
67.6M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for HoangVuSnape/distilbert-base-uncased-lora-text-classification

Finetuned
(6678)
this model