distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9786
- Accuracy: {'accuracy': 0.878}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.4003 | {'accuracy': 0.87} |
0.4049 | 2.0 | 500 | 0.4975 | {'accuracy': 0.877} |
0.4049 | 3.0 | 750 | 0.6126 | {'accuracy': 0.88} |
0.1793 | 4.0 | 1000 | 0.6702 | {'accuracy': 0.873} |
0.1793 | 5.0 | 1250 | 0.7384 | {'accuracy': 0.886} |
0.0452 | 6.0 | 1500 | 0.9276 | {'accuracy': 0.884} |
0.0452 | 7.0 | 1750 | 0.9836 | {'accuracy': 0.875} |
0.0109 | 8.0 | 2000 | 0.9703 | {'accuracy': 0.88} |
0.0109 | 9.0 | 2250 | 0.9742 | {'accuracy': 0.876} |
0.0025 | 10.0 | 2500 | 0.9786 | {'accuracy': 0.878} |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
Model tree for HoangVuSnape/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased