Edit model card

config.py

BINANCE_API_KEY = 'your_binance_api_key' ALPHA_VANTAGE_API_KEY = 'your_alpha_vantage_api_key' YAHOO_FINANCE_API_KEY = 'your_yahoo_finance_api_key' TRADING_VIEW_API_KEY = 'your_trading_view_api_key' BINOMO_API_KEY = 'your_binomo_api_key' TELEGRAM_BOT_API_KEY = 'your_telegram_bot_api_key'

data_acquisition.py

import requests import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense, Dropout from telegram.ext import Updater, CommandHandler

def fetch_binance_data(pair): url = f"https://api.binance.com/api/v3/klines?symbol={pair}&interval=1h" response = requests.get(url) data = response.json() df = pd.DataFrame(data, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume', 'close_time', 'quote_asset_volume', 'number_of_trades', 'taker_buy_base_asset_volume', 'taker_buy_quote_asset_volume', 'ignore']) df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms') return df[['timestamp', 'open', 'high', 'low', 'close', 'volume']]

def fetch_alpha_vantage_data(pair): symbol = pair.split("USDT")[0] # Assuming pair like BTCUSDT url = f"https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=60min&apikey={ALPHA_VANTAGE_API_KEY}" response = requests.get(url) data = response.json() time_series_key = 'Time Series (60min)' if time_series_key not in data: raise ValueError(f"Error fetching data from Alpha Vantage: {data}") df = pd.DataFrame(data[time_series_key]).T df.columns = ['open', 'high', 'low', 'close', 'volume'] df.index = pd.to_datetime(df.index) return df.reset_index().rename(columns={'index': 'timestamp'})

def fetch_yahoo_finance_data(pair): url = f"https://yfapi.net/v8/finance/chart/{pair}?interval=60m" headers = {'x-api-key': YAHOO_FINANCE_API_KEY} response = requests.get(url, headers=headers) data = response.json() timestamps = data['chart']['result'][0]['timestamp'] ohlc = data['chart']['result'][0]['indicators']['quote'][0] df = pd.DataFrame({ 'timestamp': pd.to_datetime(timestamps, unit='s'), 'open': ohlc['open'], 'high': ohlc['high'], 'low': ohlc['low'], 'close': ohlc['close'], 'volume': ohlc['volume'] }) return df

def fetch_trading_view_data(pair): # Placeholder for TradingView API data fetching raise NotImplementedError("TradingView API integration not implemented.")

def fetch_binomo_data(pair): # Placeholder for Binomo API data fetching raise NotImplementedError("Binomo API integration not implemented.")

def get_combined_data(pair): df_binance = fetch_binance_data(pair) df_alpha = fetch_alpha_vantage_data(pair) df_yahoo = fetch_yahoo_finance_data(pair) # Merge dataframes on timestamp df = pd.merge(df_binance, df_alpha, on='timestamp', suffixes=('_binance', '_alpha')) df = pd.merge(df, df_yahoo, on='timestamp', suffixes=('', '_yahoo')) # Drop any redundant columns or handle conflicts return df

def preprocess_data(df): df = df.dropna() scaler = StandardScaler() scaled_data = scaler.fit_transform(df[['open', 'high', 'low', 'close', 'volume']]) return scaled_data, scaler

def create_dataset(data, time_step=60): X, Y = [], [] for i in range(len(data) - time_step - 1): a = data[i:(i + time_step), :] X.append(a) Y.append(data[i + time_step, 3]) # Assuming 'close' price is the target return np.array(X), np.array(Y)

def build_model(input_shape): model = Sequential() model.add(LSTM(50, return_sequences=True, input_shape=input_shape)) model.add(LSTM(50, return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense(25)) model.add(Dense(1)) model.compile(optimizer='adam', loss='mean_squared_error') return model

def train_model(df): data, scaler = preprocess_data(df) X, Y = create_dataset(data) X_train, Y_train = X[:int(len(X) * 0.8)], Y[:int(len(Y) * 0.8)] X_val, Y_val = X[int(len(X) * 0.8):], Y[int(len(Y) * 0.8):] model = build_model((X_train.shape[1], X_train.shape[2])) model.fit(X_train, Y_train, validation_data=(X_val, Y_val), epochs=20, batch_size=32) return model, scaler

def generate_signal(pair): df = get_combined_data(pair) model, scaler = train_model(df) recent_data = df.tail(60).drop(columns=['timestamp']) scaled_recent_data = scaler.transform(recent_data) prediction = model.predict(np.expand_dims(scaled_recent_data, axis=0)) last_close = df['close'].iloc[-1] if prediction > last_close: return "Buy" else: return "Sell"

def start(update, context): context.bot.send_message(chat_id=update.effective_chat.id, text="I'm a trading bot, how can I help you today?")

def signal(update, context): pair = context.args[0] if context.args else 'BTCUSDT' try: trade_signal = generate_signal(pair) context.bot.send_message(chat_id=update.effective_chat.id, text=f"Trade Signal for {pair}: {trade_signal}") except Exception as e: context.bot.send_message(chat_id=update.effective_chat.id, text=f"Error: {e}")

def main(): updater = Updater(token=TELEGRAM_BOT_API_KEY, use_context=True) dispatcher = updater.dispatcher

start_handler = CommandHandler('start', start)
signal_handler = CommandHandler('signal', signal)

dispatcher.add_handler(start_handler)
dispatcher.add_handler(signal_handler)

updater.start_polling()

if name == 'main': main()

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using Hopper1394/RoadRoBillionaire 1