image/png

Model Card

HuggingFaceH4/vsft-llava-1.5-7b-hf-trl is a Vision Language Model, created by performing VSFT on the llava-hf/llava-1.5-7b-hf model with 260k image and conversation pairs from the HuggingFaceH4/llava-instruct-mix-vsft dataset.

Check out our Spaces demo! Open in Spaces

Model details

Model type: LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture.

Model date: The model was trained on April the 11th 2024

Example training script Train a VLM yourself with our TRL example

How to use the model

The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template (USER: xxx\nASSISTANT:) and add the token <image> to the location where you want to query images:

Using pipeline:

from transformers import pipeline
from PIL import Image    
import requests

model_id = "HuggingFaceH4/vsft-llava-1.5-7b-hf-trl"
pipe = pipeline("image-to-text", model=model_id)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"

image = Image.open(requests.get(url, stream=True).raw)
prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT:"

outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
print(outputs)
>>> {"generated_text": "\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: Lava"}

Using pure transformers:

Below is an example script to run generation in float16 precision on a GPU device:

import requests
from PIL import Image

import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration

model_id = "HuggingFaceH4/vsft-llava-1.5-7b-hf-trl"

prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat are these?\nASSISTANT:"
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"

model = LlavaForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True, 
).to(0)

processor = AutoProcessor.from_pretrained(model_id)


raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)

output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))

Model optimization

4-bit quantization through bitsandbytes library

First make sure to install bitsandbytes, pip install bitsandbytes and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:

model = LlavaForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True,
+   load_in_4bit=True
)

Use Flash-Attention 2 to further speed-up generation

First make sure to install flash-attn. Refer to the original repository of Flash Attention regarding that package installation. Simply change the snippet above with:

model = LlavaForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True,
+   use_flash_attention_2=True
).to(0)

License

Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved.

Citation

@misc{vonwerra2022trl,
  author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang},
  title = {TRL: Transformer Reinforcement Learning},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/huggingface/trl}}
}
Downloads last month
129
Safetensors
Model size
7.06B params
Tensor type
F32
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model authors have turned it off explicitly.

Model tree for HuggingFaceH4/vsft-llava-1.5-7b-hf-trl

Adapters
2 models

Dataset used to train HuggingFaceH4/vsft-llava-1.5-7b-hf-trl

Spaces using HuggingFaceH4/vsft-llava-1.5-7b-hf-trl 5