Same as https://huggingface.co/HuggingFaceM4/siglip-so400m-14-384-flash-attn2 with two changes:
- increase max resolution to 980 x 980 (instead of 384 x 384) by interpolating the position embeddings
- implement the strategy in NaViT to allow a/ variable resoltion images, b/ aspect ratio preserved images
These changes only apply to the vision tower. No changes to the text tower.
Implementation is fully backward compatible to https://huggingface.co/HuggingFaceM4/siglip-so400m-14-384-flash-attn2
-> just don't specify the patch_attention_mask
Usage:
import torch
from modeling_siglip import SiglipVisionModel
DEVICE = torch.device("cuda:0")
PATCH_SIZE = 14
pixel_values = torch.randn(2, 3, 28, 42, dtype=torch.bfloat16, device=DEVICE)
pixel_attention_mask = [
[
[1] * 14 + [1] * 14 + [1] * 14,
[1] * 14 + [1] * 14 + [1] * 14,
[1] * 14 + [1] * 14 + [1] * 14,
[1] * 14 + [1] * 14 + [1] * 14,
[1] * 14 + [1] * 14 + [1] * 14,
[1] * 14 + [1] * 14 + [1] * 14,
[1] * 14 + [1] * 14 + [1] * 14,
[1] * 14 + [1] * 14 + [1] * 14,
[1] * 14 + [1] * 14 + [1] * 14,
[1] * 14 + [1] * 14 + [1] * 14,
[1] * 14 + [1] * 14 + [1] * 14,
[1] * 14 + [1] * 14 + [1] * 14,
[1] * 14 + [1] * 14 + [1] * 14,
[1] * 14 + [1] * 14 + [1] * 14,
[0] * 14 + [0] * 14 + [0] * 14,
[0] * 14 + [0] * 14 + [0] * 14,
[0] * 14 + [0] * 14 + [0] * 14,
[0] * 14 + [0] * 14 + [0] * 14,
[0] * 14 + [0] * 14 + [0] * 14,
[0] * 14 + [0] * 14 + [0] * 14,
[0] * 14 + [0] * 14 + [0] * 14,
[0] * 14 + [0] * 14 + [0] * 14,
[0] * 14 + [0] * 14 + [0] * 14,
[0] * 14 + [0] * 14 + [0] * 14,
[0] * 14 + [0] * 14 + [0] * 14,
[0] * 14 + [0] * 14 + [0] * 14,
[0] * 14 + [0] * 14 + [0] * 14,
[0] * 14 + [0] * 14 + [0] * 14,
],
[
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
[1] * 14 + [1] * 14 + [0] * 14,
],
]
pixel_attention_mask = torch.tensor(pixel_attention_mask, dtype=torch.bool, device=DEVICE)
patches_subgrid = pixel_attention_mask.unfold(
dimension=1, size=PATCH_SIZE, step=PATCH_SIZE
).unfold(dimension=2, size=PATCH_SIZE, step=PATCH_SIZE)
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
model = SiglipVisionModel.from_pretrained("HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit", _flash_attn_2_enabled=True)
model.train()
model.vision_model.to(DEVICE, dtype=torch.bfloat16)
output = model.vision_model(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
- Downloads last month
- 7,704
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.