HumanF-MarkrAI/Gukbap-Qwen2.5-34B-VL🍚
Model Details🍚
Model Description
- Developed by: HumanF-MarkrAI
- Model type: Korean-VL-Qwen2.5-34B
- Language(s): Korean + English
- Context Length: 2048
- License: cc-by-nc-4.0
- Finetuned from model: AIDC-AI/Ovis2-34B.
Model Sources
When training, we used H100 80GB GPU
x6.
Implications🍚
If you want to know our model's details, please see 🔥Gukbap-LMM Blog🔥.
And also, we provided the Korean-LMM training code based Ovis!! 🔥Github🔥. Please star⭐⭐!!
Training Method (SFT)🧐
The following papers contain the foundational methodologies for the dataset and training methods we are currently proceeding.
SFT Text-Datasets (Private)
When we made the Open-Source based dataset
, we use microsoft/WizardLM-2-8x22B
through DeepInfra.
Our datasets are made by Evolving system
, which is propsed by WizardLM.
In training, we used 1849 training dataset, and 200 validation dataset.
- Wizard-Korea-Datasets: MarkrAI/Markr_WizardLM_train_ver4.
Learning rate: 2e-5; Epoch: 3
Benchmakrs🤗
Global MM Benchmark Score (Zero-shot)
We internally evaluated VLMEvalKit.
We utilized chatgpt-0125, gpt-4o-mini and gpt-4-turbo in MMBench
, MathVista
and MMVet
, respectively.
Model | MMStar | MathVista | HallusionBench | AI2D | OCRBench | MMVet | MMBench_V11 | AVG |
---|---|---|---|---|---|---|---|---|
Step-1o (closed model) | 69.3 | 74.7 | 89.1 | 55.8 | 92.6 | 82.8 | 87.3 | 78.8 |
InternVL2.5-78B-MPO (Open) | 72.1 | 76.6 | 58.1 | 89.2 | 90.9 | 73.5 | 87.8 | 78.3 |
Ovis2-34B (Open) | 69.2 | 76.1 | 58.8 | 88.3 | 89.4 | 77.1 | 86.5 | 77.9 |
InternVL2.5-38B-MPO (Open) | 70.1 | 73.6 | 59.7 | 87.9 | 89.4 | 72.6 | 85.4 | 77.0 |
:---------: | :-----: | :------: | :-----: | :-----: | :----: | :-----: | :-----: | :-----: |
Gukbap-Qwen2-34B-VL🍚 | 69.33 | 77.40 | 55.66 | 88.31 | 84.7 | 74.13 | 86.53 | 76.58 |
:---------: | :-----: | :------: | :-----: | :-----: | :----: | :-----: | :-----: | :-----: |
Gemini-2.0-Flash | 69.4 | 70.4 | 58.0 | 83.1 | 82.5 | 73.6 | 71.0 | 72.6 |
GPT-4o-20241120 | 65.1 | 59.9 | 56.2 | 84.9 | 80.6 | 74.5 | 84.3 | 72.2 |
Ovis1.6-Gemma2-9B (Open) | 62.00 | 67.10 | 84.42 | 51.96 | 82.60 | 64.68 | 82.20 | 70.71 |
Gukbap-Gemma2-9B-VL🍚 | 62.13 | 66.00 | 84.49 | 53.01 | 82.80 | 63.90 | 82.20 | 70.65 |
LLaVA-OneVision-72B | 65.8 | 68.4 | 47.9 | 86.2 | 74.1 | 60.6 | 84.5 | 69.6 |
VARCO-VISION-14B (NCSoft) | 64.1 | 67.6 | 46.8 | 83.9 | 81.5 | 53.0 | 81.2 | 68.3 |
GPT-4o-mini-20240718 | 54.8 | 52.4 | 46.1 | 77.8 | 78.5 | 66.9 | 76.0 | 64.6 |
HallusionBench score: (aAcc + fAcc + qAcc) / 3
Korean MM Benchmark Score (Zero-shot)
We internally evaluated 🔥our code🔥.
We utilized gpt-4o-2024-08-06 in K-LLAVA-W
evaluation.
Model | K-MMBench | K-MMStar | K-DTCBench | K-LLAVA-W | AVG |
---|---|---|---|---|---|
GPT-4o-20241120 | NaN | NaN | NaN | 85.50 | NaN |
:---------: | :-----: | :------: | :-----: | :-----: | :----: |
Gukbap-Qwen2.5-34B-VL🍚 | 89.10 | 68.13 | 77.08 | 69.00 | 75.83 |
Ovis2-34B | 89.56 | 68.27 | 76.25 | 53.67 | 71.94 |
Gukbap-Gemma2-9B-VL🍚 | 80.16 | 54.20 | 52.92 | 63.83 | 62.78 |
Ovis1.6-Gemma2-9B | 52.46 | 50.40 | 47.08 | 55.67 | 51.40 |
VARCO-VISION-14B | 87.16 | 58.13 | 85.42 | 51.17 | 70.47 |
llama-3.2-Korean-Bllossom-AICA-5B | 26.01 | 21.60 | 17.08 | 45.33 | 27.51 |
MM Benchmarks
- Global MM Bench dataset: OpenCampass MM leaderboard
- Korean MM Bench dataset: NCSOFT.
Chat Prompt😶🌫️
<|im_start|>user<image>
Hello! My favorite food is Gukbap🍚!<|im_end|>
<|im_start|>assistant
(model answer)
Gukbap-VL Series models🍚🍚
BibTeX
@article{HumanF-MarkrAI,
title={Gukbap-Qwen2.5-34B-VL},
author={MarkrAI},
year={2025},
url={https://huggingface.co/HumanF-MarkrAI}
}
- Downloads last month
- 24