File size: 3,291 Bytes
d1ae4c3 cf40846 d1ae4c3 cf40846 d1ae4c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
language:
- ko
tags:
- generated_from_trainer
metrics:
- accuracy
widget:
- text: 이 회사는 러시아의 톰스크 지역에 있는 베니어 공장에 기계를 납품하기로 되어 있었다.
example_title: example01
- text: 새로운 생산공장으로 인해 회사는 예상되는 수요 증가를 충족시킬 수 있는 능력을 증가시키고 원자재 사용을 개선하여 생산 수익성을 높일
것이다.
example_title: example02
- text: 국제 전자산업 회사인 엘코텍은 탈린 공장에서 수십 명의 직원을 해고했으며, 이전의 해고와는 달리 회사는 사무직 직원 수를 줄였다고 일간
포스티메스가 보도했다.
example_title: example03
base_model: cardiffnlp/twitter-xlm-roberta-base-sentiment
model-index:
- name: ko-finance_news_classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ko-finance_news_classifier
This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4474
- Accuracy: 0.8423
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 243 | 1.0782 | 0.8010 |
| No log | 2.0 | 486 | 1.0328 | 0.8381 |
| 0.0766 | 3.0 | 729 | 1.2348 | 0.8330 |
| 0.0766 | 4.0 | 972 | 1.3915 | 0.8052 |
| 0.046 | 5.0 | 1215 | 1.2995 | 0.8474 |
| 0.046 | 6.0 | 1458 | 1.2926 | 0.8361 |
| 0.0512 | 7.0 | 1701 | 1.2889 | 0.8330 |
| 0.0512 | 8.0 | 1944 | 1.3107 | 0.8392 |
| 0.0415 | 9.0 | 2187 | 1.4514 | 0.8309 |
| 0.0415 | 10.0 | 2430 | 1.2869 | 0.8381 |
| 0.0279 | 11.0 | 2673 | 1.2874 | 0.8526 |
| 0.0279 | 12.0 | 2916 | 1.4731 | 0.8423 |
| 0.0126 | 13.0 | 3159 | 1.3956 | 0.8443 |
| 0.0126 | 14.0 | 3402 | 1.4211 | 0.8454 |
| 0.0101 | 15.0 | 3645 | 1.3686 | 0.8474 |
| 0.0101 | 16.0 | 3888 | 1.4412 | 0.8423 |
| 0.0114 | 17.0 | 4131 | 1.4376 | 0.8423 |
| 0.0114 | 18.0 | 4374 | 1.4566 | 0.8423 |
| 0.0055 | 19.0 | 4617 | 1.4439 | 0.8443 |
| 0.0055 | 20.0 | 4860 | 1.4474 | 0.8423 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|