|
--- |
|
language: |
|
- ar |
|
metrics: |
|
- wer |
|
- cer |
|
tags: |
|
- Quran |
|
- speech |
|
- arabic |
|
- asr |
|
--- |
|
# Quran syllables recognition with tashkeel. |
|
This is fine tuned wav2vec2 model to recognize quran syllables from speech. |
|
The model was trained on private dataset along with part of Tarteel dataset after cleanning and converting into syllables .\ |
|
5-gram language model is available with the model. |
|
|
|
The model transcripe audio speech into syllables .\ |
|
For instance, when presented with the audio and transcription "ู
ููู ุงููุฌููููุฉู ููุงููููุงุณู" the expected model output would be |
|
"ู
ู ูููู ุฌููู ูู ุชู ูููู ููุงูุณู" .\ |
|
To try it out : |
|
|
|
``` |
|
!pip install datasets transformers |
|
!pip install https://github.com/kpu/kenlm/archive/master.zip pyctcdecode |
|
``` |
|
|
|
``` |
|
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC |
|
from transformers import Wav2Vec2ProcessorWithLM |
|
processor = Wav2Vec2ProcessorWithLM.from_pretrained('IbrahimSalah/Wav2vecLarge_quran_syllables_recognition') |
|
model = Wav2Vec2ForCTC.from_pretrained("IbrahimSalah/Wav2vecLarge_quran_syllables_recognition") |
|
``` |
|
``` |
|
import pandas as pd |
|
dftest = pd.DataFrame(columns=['audio']) |
|
import datasets |
|
from datasets import Dataset |
|
path ='/content/908-33.wav' |
|
dftest['audio']=[path] ## audio path |
|
dataset = Dataset.from_pandas(dftest) |
|
``` |
|
``` |
|
import torch |
|
import torchaudio |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["audio"]) |
|
print(sampling_rate) |
|
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) # The original data was with 48,000 sampling rate. You can change it according to your input. |
|
batch["audio"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
``` |
|
``` |
|
import numpy as np |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
test_dataset = dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset["audio"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
with torch.no_grad(): |
|
logits = model(inputs.input_values).logits |
|
print(logits.numpy().shape) |
|
|
|
transcription = processor.batch_decode(logits.numpy()).text |
|
print("Prediction:",transcription[0]) |
|
``` |
|
|
|
You can try the model with live recording using this Google Colab notebook : [Live Recording Recognition](https://colab.research.google.com/drive/1WYFG03o93-CBFNHhAuAo3MNmzgo4nLEJ?usp=sharing) |
|
|
|
|
|
sample audios and Outputs |
|
|
|
1- <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/645098004f731658826cfe57/tZLR9sn6VnsjYS5xT2qFB.wav"></audio> |
|
|
|
2- <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/645098004f731658826cfe57/_6p54hi5JRt_PIqxY-P0I.wav"></audio> |
|
|
|
Output |
|
``` |
|
1- ุกููู ููุงู ุกู ูู ููู
ู ูู ูููู ูููู ู
ูุนู ุฌู ุฒููู ูู ูููู ุกูุฑู ุถู ูู ู
ูุงู ููุงู ูู ูู ฺพูู
ู ู
ููู ุกููู ูู ููุงู |
|
2- ุกูุฐู ููุงู ูู ูููู ุณู ูู ูู ุกููู ุจููู ฺพู ููุงู ุกู ุจู ุชู ุกููู ูููู ุฑู ุกููู ุชู ุกู ุญู ุฏู ุนู ุดู ุฑู ูููู ูู ุจููู ููุดู ุดูู
ู ุณู ูููู ูู ู
ู ุถู ุฑู ุกููู ุชู ฺพูู
ู ูููู ุณูุงู ุฌู ุฏููููู |
|
``` |