Edit model card

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("IlhamEbdesk/bge-base-financial-matryoshka_test")
# Run inference
sentences = [
    'During fiscal year 2023, we repurchased 10.4 million shares for approximately $1,295 million.',
    'What total amount was spent on share repurchases during fiscal year 2023?',
    'What judicial decision occurred in August 2023 regarding the antitrust lawsuits against the airlines?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6743
cosine_accuracy@3 0.8052
cosine_accuracy@5 0.8459
cosine_accuracy@10 0.8933
cosine_precision@1 0.6743
cosine_precision@3 0.2684
cosine_precision@5 0.1692
cosine_precision@10 0.0893
cosine_recall@1 0.6743
cosine_recall@3 0.8052
cosine_recall@5 0.8459
cosine_recall@10 0.8933
cosine_ndcg@10 0.7838
cosine_mrr@10 0.7487
cosine_map@100 0.7524

Information Retrieval

Metric Value
cosine_accuracy@1 0.669
cosine_accuracy@3 0.8024
cosine_accuracy@5 0.8444
cosine_accuracy@10 0.893
cosine_precision@1 0.669
cosine_precision@3 0.2675
cosine_precision@5 0.1689
cosine_precision@10 0.0893
cosine_recall@1 0.669
cosine_recall@3 0.8024
cosine_recall@5 0.8444
cosine_recall@10 0.893
cosine_ndcg@10 0.7806
cosine_mrr@10 0.7446
cosine_map@100 0.7484

Information Retrieval

Metric Value
cosine_accuracy@1 0.6624
cosine_accuracy@3 0.7933
cosine_accuracy@5 0.8335
cosine_accuracy@10 0.8832
cosine_precision@1 0.6624
cosine_precision@3 0.2644
cosine_precision@5 0.1667
cosine_precision@10 0.0883
cosine_recall@1 0.6624
cosine_recall@3 0.7933
cosine_recall@5 0.8335
cosine_recall@10 0.8832
cosine_ndcg@10 0.7726
cosine_mrr@10 0.7372
cosine_map@100 0.7413

Information Retrieval

Metric Value
cosine_accuracy@1 0.6419
cosine_accuracy@3 0.7698
cosine_accuracy@5 0.8132
cosine_accuracy@10 0.8629
cosine_precision@1 0.6419
cosine_precision@3 0.2566
cosine_precision@5 0.1626
cosine_precision@10 0.0863
cosine_recall@1 0.6419
cosine_recall@3 0.7698
cosine_recall@5 0.8132
cosine_recall@10 0.8629
cosine_ndcg@10 0.7522
cosine_mrr@10 0.7168
cosine_map@100 0.7217

Information Retrieval

Metric Value
cosine_accuracy@1 0.5902
cosine_accuracy@3 0.7241
cosine_accuracy@5 0.7662
cosine_accuracy@10 0.8186
cosine_precision@1 0.5902
cosine_precision@3 0.2414
cosine_precision@5 0.1532
cosine_precision@10 0.0819
cosine_recall@1 0.5902
cosine_recall@3 0.7241
cosine_recall@5 0.7662
cosine_recall@10 0.8186
cosine_ndcg@10 0.7039
cosine_mrr@10 0.6674
cosine_map@100 0.6732

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.7273 1 0.6718 0.7044 0.7160 0.6086 0.7194
1.4545 2 0.6897 0.7192 0.7298 0.6329 0.7314
2.9091 4 0.7051 0.7292 0.7387 0.6504 0.7409
0.7273 1 0.7051 0.7292 0.7387 0.6504 0.7409
1.4545 2 0.7148 0.7366 0.7446 0.6636 0.7473
2.9091 4 0.7217 0.7413 0.7484 0.6732 0.7524
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for IlhamEbdesk/bge-base-financial-matryoshka_test

Finetuned
(254)
this model

Evaluation results