Ilya-Nazimov's picture
End of training
ff92dd3 verified
|
raw
history blame
4.35 kB
metadata
license: mit
base_model: cointegrated/rubert-tiny2
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: rubert-tiny2-odonata-extended-305-1-ner
    results: []

rubert-tiny2-odonata-extended-305-1-ner

This model is a fine-tuned version of cointegrated/rubert-tiny2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0181
  • Precision: 0.7075
  • Recall: 0.2799
  • F1: 0.4011
  • Accuracy: 0.9963

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 213 0.0343 0.0 0.0 0.0 0.9952
No log 2.0 426 0.0219 0.0 0.0 0.0 0.9952
0.045 3.0 639 0.0151 0.0 0.0 0.0 0.9952
0.045 4.0 852 0.0121 0.7727 0.1269 0.2179 0.9957
0.0065 5.0 1065 0.0127 0.6296 0.1269 0.2112 0.9957
0.0065 6.0 1278 0.0116 0.6667 0.2463 0.3597 0.9962
0.0065 7.0 1491 0.0107 0.6696 0.2873 0.4021 0.9964
0.0047 8.0 1704 0.0115 0.7158 0.2537 0.3747 0.9963
0.0047 9.0 1917 0.0117 0.7327 0.2761 0.4011 0.9963
0.0037 10.0 2130 0.0115 0.675 0.3022 0.4175 0.9964
0.0037 11.0 2343 0.0128 0.6990 0.2687 0.3881 0.9963
0.0032 12.0 2556 0.0136 0.6931 0.2612 0.3794 0.9963
0.0032 13.0 2769 0.0136 0.7 0.2873 0.4074 0.9963
0.0032 14.0 2982 0.0132 0.6774 0.3134 0.4286 0.9964
0.0026 15.0 3195 0.0137 0.6942 0.3134 0.4319 0.9963
0.0026 16.0 3408 0.0140 0.7193 0.3060 0.4293 0.9964
0.0022 17.0 3621 0.0144 0.6991 0.2948 0.4147 0.9964
0.0022 18.0 3834 0.0157 0.7156 0.2910 0.4138 0.9964
0.0019 19.0 4047 0.0166 0.6923 0.2351 0.3510 0.9962
0.0019 20.0 4260 0.0163 0.72 0.2687 0.3913 0.9963
0.0019 21.0 4473 0.0159 0.6957 0.2985 0.4178 0.9963
0.0017 22.0 4686 0.0165 0.6696 0.2873 0.4021 0.9962
0.0017 23.0 4899 0.0174 0.6952 0.2724 0.3914 0.9963
0.0015 24.0 5112 0.0180 0.6882 0.2388 0.3546 0.9961
0.0015 25.0 5325 0.0184 0.6915 0.2425 0.3591 0.9962
0.0014 26.0 5538 0.0183 0.7041 0.2575 0.3770 0.9962
0.0014 27.0 5751 0.0177 0.7009 0.2799 0.4000 0.9963
0.0014 28.0 5964 0.0180 0.7075 0.2799 0.4011 0.9963
0.0013 29.0 6177 0.0178 0.6991 0.2948 0.4147 0.9963
0.0013 30.0 6390 0.0181 0.7075 0.2799 0.4011 0.9963

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cpu
  • Datasets 2.19.2
  • Tokenizers 0.19.1