Evaluation on Common Voice FR Test
The script used for training and evaluation can be found here: https://github.com/irebai/wav2vec2
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
Wav2Vec2ForCTC,
Wav2Vec2Processor,
)
import re
model_name = "Ilyes/wav2vec2-large-xlsr-53-french"
device = "cpu" # "cuda"
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2Processor.from_pretrained(model_name)
ds = load_dataset("common_voice", "fr", split="test", cache_dir="./data/fr")
chars_to_ignore_regex = '[\,\?\.\!\;\:\"\β\%\β\β\οΏ½\β\β\β\β\β\β¦\Β·\!\Η\?\Β«\βΉ\Β»\βΊβ\β\\ΚΏ\ΚΎ\β\β\\|\.\,\;\:\*\β\β\β\β\_\/\:\Λ\;\,\=\Β«\Β»\β]'
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("β", "'")
return batch
resampler = torchaudio.transforms.Resample(48_000, 16_000)
ds = ds.map(map_to_array)
def map_to_pred(batch):
features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)
batch["target"] = batch["sentence"]
return batch
result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys()))
wer = load_metric("wer")
print(wer.compute(predictions=result["predicted"], references=result["target"]))
Results
WER=12.82%
CER=4.40%
- Downloads last month
- 64
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.